Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Groups definable in separably closed fields


Authors: E. Bouscaren and F. Delon
Journal: Trans. Amer. Math. Soc. 354 (2002), 945-966
MSC (1991): Primary 03C60, 03C45, 12L12
DOI: https://doi.org/10.1090/S0002-9947-01-02886-0
Published electronically: October 24, 2001
MathSciNet review: 1867366
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the groups which are infinitely definable in separably closed fields of finite degree of imperfection. We prove in particular that no new definable groups arise in this way: we show that any group definable in such a field $L$ is definably isomorphic to the group of $L$-rational points of an algebraic group defined over $L$.


References [Enhancements On Off] (What's this?)

  • [BoDe] E. Bouscaren and F. Delon, Minimal groups in separably closed fields, to appear in the Journal of Symbolic Logic.
  • [De 88] F. Delon, Idéaux et types sur les corps séparablement clos, Supplément au Bulletin de la SMF, Mémoire 33, Tome 116 (1988). MR 90m:03067
  • [De 98] F. Delon, Separably closed fields, in Model Theory and Algebraic Geometry, E. Bouscaren (Ed.), Lecture Notes in Mathematics 1696, Springer, 1998. MR 2000a:12011
  • [Hu 87] J.E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, Springer, 1987. MR 53:633
  • [Hr 96] E. Hrushovski, The Mordell-Lang conjecture for function fields, Journal AMS 9 (1996), 667-690. MR 97h:11154
  • [La 58] S. Lang, Introduction to algebraic geometry, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York, 1958. MR 20:7021
  • [Me 94] M. Messmer, Groups and fields interpretable in separably closed fields, TAMS 344 (1994), 361-377. MR 95c:03086
  • [Me 96] M. Messmer, Some model theory of separably closed fields, in Model Theory of Fields, Lecture Notes in Logic 5, Springer, 1996. MR 98m:03075
  • [Pi 96] A. Pillay, Geometrical Stability Theory, Oxford University Press, 1996. MR 98a:03049
  • [Pi 98] A. Pillay, Model theory of algebraically closed fields, in Model Theory and Algebraic Geometry, E. Bouscaren (Ed.), Lecture Notes in Mathematics 1696, Springer, 1998. MR 2000f:12008
  • [Po 87] B. Poizat, Groupes Stables, Nur al-mantiq wal ma'rifah, Villeurbanne, France, 1987. MR 89b:03056
  • [Sp 98] T.A. Springer, Linear algebraic groups, 2nd edition, Birkhäuser, 1998. MR 99h:20075
  • [Wa 97] F. Wagner, Stable Groups, London Math. Soc. LNS 240, Cambridge University Press, 1997. MR 99g:20010
  • [We 55] A. Weil, On algebraic groups of transformations, American Journal of Math. 77 (1955), 355-391. MR 17:533f

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 03C60, 03C45, 12L12

Retrieve articles in all journals with MSC (1991): 03C60, 03C45, 12L12


Additional Information

E. Bouscaren
Affiliation: Université Paris 7- CNRS, UFR de Mathématiques, Case 7012, 2 Place Jussieu, 75251 Paris cedex 05, France
Email: elibou@logique.jussieu.fr

F. Delon
Affiliation: Université Paris 7- CNRS, UFR de Mathématiques, Case 7012, 2 Place Jussieu, 75251 Paris cedex 05, France
Email: delon@logique.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9947-01-02886-0
Keywords: Separably closed fields, groups
Received by editor(s): January 10, 1999
Received by editor(s) in revised form: September 20, 2000
Published electronically: October 24, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society