Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations

Author: Koichiro Naito
Journal: Trans. Amer. Math. Soc. 354 (2002), 1137-1151
MSC (2000): Primary 11K60, 28A80, 35B15
Published electronically: September 21, 2001
MathSciNet review: 1867375
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce recurrent dimensions of discrete dynamical systems and we give upper and lower bounds of the recurrent dimensions of the quasi-periodic orbits. We show that these bounds have different values according to the algebraic properties of the frequency and we investigate these dimensions of quasi-periodic trajectories given by solutions of a nonlinear PDE.

References [Enhancements On Off] (What's this?)

  • 1. V. Barbu and Th. Precupanu, Convexity and optimization in Banach spaces, 2nd ed., Mathematics and its Applications (East European Series), vol. 10, D. Reidel Publishing Co., Dordrecht; Editura Academiei Republicii Socialiste România, Bucharest, 1986. MR 860772
  • 2. Pierre Bergé, Yves Pomeau, and Christian Vidal, Order within chaos, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; Hermann, Paris, 1986. Towards a deterministic approach to turbulence; With a preface by David Ruelle; Translated from the French by Laurette Tuckerman. MR 882723
  • 3. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). MR 0348562
  • 4. M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57–94. MR 0300166
  • 5. C. M. Dafermos, Almost periodic processes and almost periodic solutions of evolution equations, Dynamical systems (Proc. Internat. Sympos., Univ. Florida, Gainesville, Fla., 1976) Academic Press, New York, 1977, pp. 43–57. MR 0463600
  • 6. Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 0226230
  • 7. Koichiro Naito, On the almost periodicity of solutions of a reaction diffusion system, J. Differential Equations 44 (1982), no. 1, 9–20. MR 651684, 10.1016/0022-0396(82)90022-5
  • 8. Koichiro Naito, Fractal dimensions of almost periodic attractors, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 791–803. MR 1406434, 10.1017/S014338570000910X
  • 9. Koichiro Naito, Dimension estimate of almost periodic attractors by simultaneous Diophantine approximation, J. Differential Equations 141 (1997), no. 1, 179–200. MR 1485947, 10.1006/jdeq.1997.3318
  • 10. Koichiro Naito, Correlation dimensions of quasi-periodic orbits with frequencies given by Roth numbers, Differential equations and applications (Chinju, 1998) Nova Sci. Publ., Huntington, NY, 2000, pp. 111–129. MR 1763446
  • 11. Koichiro Naito, Correlation dimensions of quasi-periodic orbits with frequencies given by quasi Roth numbers, J. Korean Math. Soc. 37 (2000), no. 5, 857–870. MR 1783592
  • 12. -, Fractal dimensions of quasi-periodic orbits given by Weierstrass type functions, to appear in J. Dyn. Diff. Eq.
  • 13. Yakov B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications. MR 1489237
  • 14. R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math. 24 (1968), 525–539. MR 0236689
  • 15. R. T. Rockafellar, Integrals which are convex functionals. II, Pacific J. Math. 39 (1971), 439–469. MR 0310612
  • 16. Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11K60, 28A80, 35B15

Retrieve articles in all journals with MSC (2000): 11K60, 28A80, 35B15

Additional Information

Koichiro Naito
Affiliation: Faculty of Engineering, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan

Keywords: Diophantine approximation, quasi-periodic solutions, fractal dimension
Received by editor(s): October 29, 2000
Received by editor(s) in revised form: May 9, 2001
Published electronically: September 21, 2001
Article copyright: © Copyright 2001 American Mathematical Society