Splittings of finitely generated groups over two-ended subgroups

Author:
Brian H. Bowditch

Journal:
Trans. Amer. Math. Soc. **354** (2002), 1049-1078

MSC (2000):
Primary 20F65, 20E08

Published electronically:
October 26, 2001

MathSciNet review:
1867372

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a means of constructing splittings of a one-ended finitely generated group over two-ended subgroups, starting with a finite collection of codimension-one two-ended subgroups. In the case where all the two-ended subgroups have two-ended commensurators, we obtain an annulus theorem, and a form of the JSJ splitting of Rips and Sela. The construction uses ideas from the work of Dunwoody, Sageev and Swenson. We use a particular kind of order structure which combines cyclic orders and treelike structures. In the special case of hyperbolic groups, this provides a link between combinarorial constructions, and constructions arising from the topological structure of the boundary. In this context, we recover the annulus theorem of Scott and Swarup. We also show that a one-ended finitely generated group which contains an infinite-order element, and such that every infinite cyclic subgroup is (virtually) codimension-one is a virtual surface group.

**[AN]**S. A. Adeleke and Peter M. Neumann,*Relations related to betweenness: their structure and automorphisms*, Mem. Amer. Math. Soc.**131**(1998), no. 623, viii+125. MR**1388893**, 10.1090/memo/0623**[BeF]**Mladen Bestvina and Mark Feighn,*Bounding the complexity of simplicial group actions on trees*, Invent. Math.**103**(1991), no. 3, 449–469. MR**1091614**, 10.1007/BF01239522**[Bo1]**Brian H. Bowditch,*Cut points and canonical splittings of hyperbolic groups*, Acta Math.**180**(1998), no. 2, 145–186. MR**1638764**, 10.1007/BF02392898**[Bo2]**B. H. Bowditch,*Convergence groups and configuration spaces*, Geometric group theory down under (Canberra, 1996) de Gruyter, Berlin, 1999, pp. 23–54. MR**1714838****[Bo3]**B. H. Bowditch,*Treelike structures arising from continua and convergence groups*, Mem. Amer. Math. Soc.**139**(1999), no. 662, viii+86. MR**1483830**, 10.1090/memo/0662**[Bo4]**B.H.Bowditch,*Planar groups and the Seifert conjecture*, preprint, Southampton (1999).**[CJ]**Andrew Casson and Douglas Jungreis,*Convergence groups and Seifert fibered 3-manifolds*, Invent. Math.**118**(1994), no. 3, 441–456. MR**1296353**, 10.1007/BF01231540**[DSa]**M. J. Dunwoody and M. E. Sageev,*JSJ-splittings for finitely presented groups over slender groups*, Invent. Math.**135**(1999), no. 1, 25–44. MR**1664694**, 10.1007/s002220050278**[DSw]**M. J. Dunwoody and E. L. Swenson,*The algebraic torus theorem*, Invent. Math.**140**(2000), no. 3, 605–637. MR**1760752**, 10.1007/s002220000063**[FP]**K.Fujiwara, P.Papasoglu,*JSJ decompositions of finitely presented groups and complexes of groups*, preprint (1997).**[Ga]**David Gabai,*Convergence groups are Fuchsian groups*, Ann. of Math. (2)**136**(1992), no. 3, 447–510. MR**1189862**, 10.2307/2946597**[Geo]**R.Geoghegan,*Topological methods in group theory*, manuscript, Binghamton (2000).**[GerM]**F. W. Gehring and G. J. Martin,*Discrete quasiconformal groups. I*, Proc. London Math. Soc. (3)**55**(1987), no. 2, 331–358. MR**896224**, 10.1093/plms/s3-55_2.331**[Gr]**M. Gromov,*Hyperbolic groups*, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR**919829**, 10.1007/978-1-4613-9586-7_3**[K]**Peter H. Kropholler,*A group-theoretic proof of the torus theorem*, Geometric group theory, Vol. 1 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 181, Cambridge Univ. Press, Cambridge, 1993, pp. 138–158. MR**1238522**, 10.1017/CBO9780511661860.013**[KR]**P. H. Kropholler and M. A. Roller,*Relative ends and duality groups*, J. Pure Appl. Algebra**61**(1989), no. 2, 197–210. MR**1025923**, 10.1016/0022-4049(89)90014-5**[M]**G.Mess,*The Seifert conjecture and groups that are coarse quasiisometric to planes*, preprint, UCLA (1988).**[P]**P.Papasoglu,*Quasi-isometry invariance of group splittings*, preprint, Orsay (2000).**[RS]**E. Rips and Z. Sela,*Cyclic splittings of finitely presented groups and the canonical JSJ decomposition*, Ann. of Math. (2)**146**(1997), no. 1, 53–109. MR**1469317**, 10.2307/2951832**[ScS1]**P.Scott, G.A.Swarup,*An algebraic annulus theorem*, Pacific J. Math.**196**(2000) 461-506. CMP**2001:05****[ScS2]**P.Scott, G.A.Swarup,*The number of ends of a pair of groups*, preprint, Ann Arbor/Melbourne (2000).**[Se]**Z. Sela,*Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups. II*, Geom. Funct. Anal.**7**(1997), no. 3, 561–593. MR**1466338**, 10.1007/s000390050019**[Sw]**E. L. Swenson,*Axial pairs and convergence groups on 𝑆¹*, Topology**39**(2000), no. 2, 229–237. MR**1722040**, 10.1016/S0040-9383(98)00068-8**[T1]**Pekka Tukia,*Homeomorphic conjugates of Fuchsian groups*, J. Reine Angew. Math.**391**(1988), 1–54. MR**961162**, 10.1515/crll.1988.391.1**[T2]**Pekka Tukia,*Convergence groups and Gromov’s metric hyperbolic spaces*, New Zealand J. Math.**23**(1994), no. 2, 157–187. MR**1313451****[W]**L. E. Ward Jr.,*Axioms for cutpoints*, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 327–336. MR**619058**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20F65,
20E08

Retrieve articles in all journals with MSC (2000): 20F65, 20E08

Additional Information

**Brian H. Bowditch**

Affiliation:
Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO17 1BJ, Great Britain

DOI:
https://doi.org/10.1090/S0002-9947-01-02907-5

Received by editor(s):
January 31, 2001

Received by editor(s) in revised form:
July 1, 2001

Published electronically:
October 26, 2001

Article copyright:
© Copyright 2001
American Mathematical Society