Splittings of finitely generated groups over two-ended subgroups

Author:
Brian H. Bowditch

Journal:
Trans. Amer. Math. Soc. **354** (2002), 1049-1078

MSC (2000):
Primary 20F65, 20E08

DOI:
https://doi.org/10.1090/S0002-9947-01-02907-5

Published electronically:
October 26, 2001

MathSciNet review:
1867372

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a means of constructing splittings of a one-ended finitely generated group over two-ended subgroups, starting with a finite collection of codimension-one two-ended subgroups. In the case where all the two-ended subgroups have two-ended commensurators, we obtain an annulus theorem, and a form of the JSJ splitting of Rips and Sela. The construction uses ideas from the work of Dunwoody, Sageev and Swenson. We use a particular kind of order structure which combines cyclic orders and treelike structures. In the special case of hyperbolic groups, this provides a link between combinarorial constructions, and constructions arising from the topological structure of the boundary. In this context, we recover the annulus theorem of Scott and Swarup. We also show that a one-ended finitely generated group which contains an infinite-order element, and such that every infinite cyclic subgroup is (virtually) codimension-one is a virtual surface group.

**[AN]**S.A.Adeleke, P.M.Neumann,*Relations related to betweenness: their structure and automorphisms*Memoirs Amer. Math. Soc. Volume 131, no. 623 (1998). MR**98h:20008****[BeF]**M.Bestvina, M.Feighn,*Bounding the complexity of simplicial actions on trees*, Invent. Math.**103**(1991) 449-469. MR**92c:20044****[Bo1]**B.H.Bowditch,*Cut points and canonical splitting of hyperbolic groups*, Acta Math.**180**(1998) 145-186. MR**99g:20069****[Bo2]**B.H.Bowditch,*Convergence groups and configuration spaces*, in ``Group Theory Down Under'', (ed. J.Cossey, C.F.Miller III, W.D.Neumann, M.Shapiro), de Gruyter (1999) 23-54. MR**2001d:20035****[Bo3]**B.H.Bowditch,*Treelike structures arising from continua and convergence groups*, Memoirs Amer. Math. Soc. Volume 139, no. 662 (1999). MR**2000c:20061****[Bo4]**B.H.Bowditch,*Planar groups and the Seifert conjecture*, preprint, Southampton (1999).**[CJ]**A.Casson, D.Jungreis,*Convergence groups and Seifert fibered 3-manifolds*, Invent. Math.**118**(1994) 441-456. MR**96f:57011****[DSa]**M.J.Dunwoody, M.E.Sageev,*JSJ-splittings for finitely presented groups over slender subgroups*, Invent. Math.**135**(1999) 25-44. MR**2000b:20050****[DSw]**M.J.Dunwoody, E.L.Swenson,*The algebraic torus theorem*, Invent. Math.**140**(2000) 605-637. MR**2001d:20039****[FP]**K.Fujiwara, P.Papasoglu,*JSJ decompositions of finitely presented groups and complexes of groups*, preprint (1997).**[Ga]**D.Gabai,*Convergence groups are fuchsian groups*, Ann. of Math.**136**(1992) 447-510. MR**93m:20065****[Geo]**R.Geoghegan,*Topological methods in group theory*, manuscript, Binghamton (2000).**[GerM]**F.W.Gehring, G.J.Martin,*Discrete quasiconformal groups I*, Proc. London Math. Soc.**55**(1987) 331-358. MR**88m:30057****[Gr]**M.Gromov,*Hyperbolic groups*, in ``Essays in Group Theory'' (ed. S.M.Gersten) M.S.R.I. Publications No. 8, Springer-Verlag (1987) 75-263. MR**89e:20070****[K]**P.H.Kropholler,*A group theoretic proof of the torus theorem*, in ``Geometric Group Theory, Volume 1'', London Math. Soc. Lecture Note Series No. 181, (ed. G.A.Niblo, M.A.Roller), Cambridge University Press (1993) 138-158. MR**94i:57029****[KR]**P.H.Kropholler, M.A.Roller,*Relative ends and duality groups*, J. Pure Appl. Algebra**61**(1989) 197-210. MR**91b:20069****[M]**G.Mess,*The Seifert conjecture and groups that are coarse quasiisometric to planes*, preprint, UCLA (1988).**[P]**P.Papasoglu,*Quasi-isometry invariance of group splittings*, preprint, Orsay (2000).**[RS]**E.Rips, Z.Sela,*Cyclic splittings of finitely presented groups and the canonical JSJ decomposition*, Ann. of Math.**146**(1997) 53-109. MR**98m:20044****[ScS1]**P.Scott, G.A.Swarup,*An algebraic annulus theorem*, Pacific J. Math.**196**(2000) 461-506. CMP**2001:05****[ScS2]**P.Scott, G.A.Swarup,*The number of ends of a pair of groups*, preprint, Ann Arbor/Melbourne (2000).**[Se]**Z.Sela,*Structure and rigidity in (Gromov) hyperbolic groups and discrete*, groups in rank 1 Lie groups II Geom. Funct. Anal.**7**(1997) 561-593. MR**98j:20044****[Sw]**E.L.Swenson,*Axial pairs and convergence groups on*, Topology**39**(2000) 229-237. MR**2001c:20097****[T1]**P.Tukia,*Homeomorphic conjugates of fuchsian groups*, J. Reine Angew. Math.**391**(1988) 1-54. MR**89m:30047****[T2]**P.Tukia,*Convergence groups and Gromov's metric hyperbolic spaces*, New Zealand J. Math.**23**(1994) 157-187. MR**96c:30042****[W]**L.E.Ward,*Axioms for cutpoints*, in ``General topology and modern analysis'', Proceedings, University of California, Riverside (ed. L.F.McAuley, M.M.Rao), Academic Press (1980) 327-336. MR**82g:54053**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20F65,
20E08

Retrieve articles in all journals with MSC (2000): 20F65, 20E08

Additional Information

**Brian H. Bowditch**

Affiliation:
Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO17 1BJ, Great Britain

DOI:
https://doi.org/10.1090/S0002-9947-01-02907-5

Received by editor(s):
January 31, 2001

Received by editor(s) in revised form:
July 1, 2001

Published electronically:
October 26, 2001

Article copyright:
© Copyright 2001
American Mathematical Society