Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Milnor classes of local complete intersections


Authors: J.-P. Brasselet, D. Lehmann, J. Seade and T. Suwa
Journal: Trans. Amer. Math. Soc. 354 (2002), 1351-1371
MSC (2000): Primary 57R20; Secondary 14C17, 14J17, 32S55, 58K45
Published electronically: November 21, 2001
MathSciNet review: 1873009
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $V$ be a compact local complete intersection defined as the zero set of a section of a holomorphic vector bundle over the ambient space. For each connected component $S$ of the singular set $\operatorname{Sing}(V)$ of $V$, we define the Milnor class $\mu _{*}(V,S)$ in the homology of $S$. The difference between the Schwartz-MacPherson class and the Fulton-Johnson class of $V$ is shown to be equal to the sum of $\mu _{*}(V,S)$ over the connected components $S$ of $\operatorname{Sing}(V)$. This is done by proving Poincaré-Hopf type theorems for these classes with respect to suitable tangent frames. The $0$-degree component $\mu _{0}(V,S)$ coincides with the Milnor numbers already defined by various authors in particular situations. We also give an explicit formula for $\mu _{*}(V,S)$ when $S$ is a non-singular component and $V$ satisfies the Whitney condition along $S$.


References [Enhancements On Off] (What's this?)

  • [A1] Paolo Aluffi, Singular schemes of hypersurfaces, Duke Math. J. 80 (1995), no. 2, 325–351. MR 1369396, 10.1215/S0012-7094-95-08014-4
  • [A2] P. Aluffi, Chern classes for singular hypersurfaces, Trans. Amer. Math. Soc. 351 (1999), 3989-4026. CMP 99:15
  • [BB] Paul Baum and Raoul Bott, Singularities of holomorphic foliations, J. Differential Geometry 7 (1972), 279–342. MR 0377923
  • [Bo] Raoul Bott, Lectures on characteristic classes and foliations, Lectures on algebraic and differential topology (Second Latin American School in Math., Mexico City, 1971) Springer, Berlin, 1972, pp. 1–94. Lecture Notes in Math., Vol. 279. Notes by Lawrence Conlon, with two appendices by J. Stasheff. MR 0362335
  • [Br1] J.-P. Brasselet, Définition combinatoire des homomorphismes de Poincaré, Alexander et Thom, pour une pseudo-variété, The Euler-Poincaré characteristic (French), Astérisque, vol. 83, Soc. Math. France, Paris, 1981, pp. 71–91 (French). MR 629124
  • [Br2] J.-P. Brasselet, From Chern classes to Milnor classes, Singularities - Sapporo 1998, Advanced Studies in Pure Math. 29, Math. Soc. Japan, 2000, pp. 31-52. CMP 2001:11
  • [BS] J.-P. Brasselet and M.-H. Schwartz, Sur les classes de Chern d’un ensemble analytique complexe, The Euler-Poincaré characteristic (French), Astérisque, vol. 82, Soc. Math. France, Paris, 1981, pp. 93–147 (French). MR 629125
  • [F] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
  • [FJ] William Fulton and Kent Johnson, Canonical classes on singular varieties, Manuscripta Math. 32 (1980), no. 3-4, 381–389. MR 595428, 10.1007/BF01299611
  • [GSV] X. Gómez-Mont, J. Seade, and A. Verjovsky, The index of a holomorphic flow with an isolated singularity, Math. Ann. 291 (1991), no. 4, 737–751. MR 1135541, 10.1007/BF01445237
  • [H] Helmut Hamm, Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971), 235–252 (German). MR 0286143
  • [Le1] Daniel Lehmann, Variétés stratifiées 𝐶^{∞}: intégration de Čech-de Rham, et théorie de Chern-Weil, Geometry and topology of submanifolds, II (Avignon, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 205–248 (French). MR 1068742
  • [Le2] D. Lehmann, A Chern-Weil theory for Milnor classes, Singularities - Sapporo 1998, Advanced Studies in Pure Math. 29, Math. Soc. Japan, 2000, pp. 181-201. CMP 2001:11
  • [LSS] Daniel Lehmann, Marcio Soares, and Tatsuo Suwa, On the index of a holomorphic vector field tangent to a singular variety, Bol. Soc. Brasil. Mat. (N.S.) 26 (1995), no. 2, 183–199. MR 1364267, 10.1007/BF01236993
  • [Lo] E. J. N. Looijenga, Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, vol. 77, Cambridge University Press, Cambridge, 1984. MR 747303
  • [Ma] R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 0361141
  • [Mi] John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
  • [OY] T. Ohmoto and S. Yokura, Product formula for the Milnor class, to appear in Bull. Polish Acad. Sci. 48 (2000), 387-401. CMP 2001:05
  • [P] Adam Parusiński, A generalization of the Milnor number, Math. Ann. 281 (1988), no. 2, 247–254. MR 949831, 10.1007/BF01458431
  • [PP1] Adam Parusiński and Piotr Pragacz, A formula for the Euler characteristic of singular hypersurfaces, J. Algebraic Geom. 4 (1995), no. 2, 337–351. MR 1311354
  • [PP2] A. Parusinski and P. Pragacz, Characteristic classes of hypersurfaces and characteristic cycles, J. Algebraic Geom. 10 (2001), 63-79. CMP 2001:04
  • [Sc1] Marie-Hélène Schwartz, Classes caractéristiques définies par une stratification d’une variété analytique complexe. I, C. R. Acad. Sci. Paris 260 (1965), 3262–3264 (French). MR 0212842
    Marie-Hélène Schwartz, Classes caractéristiques définies par une stratification d’une variété analytique complexe, C. R. Acad. Sci. Paris 260 (1965), 3535–3537 (French). MR 0184254
  • [Sc2] Marie-Hélène Schwartz, Champs radiaux sur une stratification analytique, Travaux en Cours [Works in Progress], vol. 39, Hermann, Paris, 1991 (French). MR 1096495
  • [Sc3] M.-H. Schwartz, Classes de Chern des ensembles analytiques, Actualités Mathématiques, Hermann, Paris, 2000.
  • [SS1] José A. Seade and Tatsuo Suwa, A residue formula for the index of a holomorphic flow, Math. Ann. 304 (1996), no. 4, 621–634. MR 1380446, 10.1007/BF01446310
  • [SS2] José Seade and Tatsuo Suwa, An adjunction formula for local complete intersections, Internat. J. Math. 9 (1998), no. 6, 759–768. MR 1644307, 10.1142/S0129167X98000324
  • [Su1] Tatsuo Suwa, Classes de Chern des intersections complètes locales, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 1, 67–70 (French, with English and French summaries). MR 1435589, 10.1016/S0764-4442(97)80105-X
  • [Su2] Tatsuo Suwa, Indices of vector fields and residues of singular holomorphic foliations, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1998. MR 1649358
  • [Su3] Tatsuo Suwa, Dual class of a subvariety, Tokyo J. Math. 23 (2000), no. 1, 51–68. MR 1763504, 10.3836/tjm/1255958807
  • [St] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
  • [W] Hassler Whitney, Tangents to an analytic variety, Ann. of Math. (2) 81 (1965), 496–549. MR 0192520
  • [Y] S. Yokura, On a Milnor class, Preprint 1997.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57R20, 14C17, 14J17, 32S55, 58K45

Retrieve articles in all journals with MSC (2000): 57R20, 14C17, 14J17, 32S55, 58K45


Additional Information

J.-P. Brasselet
Affiliation: Institut de Mathématiques de Luminy, UPR 9016 CNRS, Campus de Luminy - Case 907, 13288 Marseille Cedex 9, France
Email: jpb@iml.univ-mrs.fr

D. Lehmann
Affiliation: Département des Sciences Mathématiques, Université de Montpellier II, 34095 Montpellier Cedex 5, France
Email: lehmann@darboux.math.univ-montp2.fr

J. Seade
Affiliation: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, México 04510 D.F., México
Email: jseade@matem.unam.mx

T. Suwa
Affiliation: Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
Email: suwa@math.sci.hokudai.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-01-02846-X
Received by editor(s): July 15, 2000
Received by editor(s) in revised form: December 1, 2000
Published electronically: November 21, 2001
Article copyright: © Copyright 2001 American Mathematical Society