Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Wandering orbit portraits


Author: Jan Kiwi
Journal: Trans. Amer. Math. Soc. 354 (2002), 1473-1485
MSC (2000): Primary 37F10, 37F20
DOI: https://doi.org/10.1090/S0002-9947-01-02896-3
Published electronically: November 20, 2001
MathSciNet review: 1873015
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a counting problem in holomorphic dynamics related to external rays of complex polynomials. We give upper bounds on the number of external rays that land at a point $z$ in the Julia set of a polynomial, provided that $z$has an infinite forward orbit.


References [Enhancements On Off] (What's this?)

  • [At] Pau Atela, Bifurcations of dynamic rays in complex polynomials of degree two, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 401–423. MR 1182654, https://doi.org/10.1017/S0143385700006854
  • [BL] A. Blokh and G. Levin, Growing trees, laminations and the dynamics on the Julia set, Preprint IHES, September 1999.
  • [CG] Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383
  • [D] Adrien Douady, Descriptions of compact sets in 𝐶, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 429–465. MR 1215973
  • [DH] A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
    A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie II, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 85, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985 (French). With the collaboration of P. Lavaurs, Tan Lei and P. Sentenac. MR 812271
    A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
    A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie II, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 85, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985 (French). With the collaboration of P. Lavaurs, Tan Lei and P. Sentenac. MR 812271
  • [G] De Hai Zhang, 𝑞-deformed Gel′fand-Dikiĭ potentials of quantum deformation KdV equation, Proceedings of the 1992 Nonlinear Science Symposium (Chinese) (Hefei, 1992), 1993, pp. 97–101 (English, with English and Chinese summaries). MR 1228289
  • [GM] Lisa R. Goldberg and John Milnor, Fixed points of polynomial maps. II. Fixed point portraits, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 51–98. MR 1209913
  • [Ke] K. Keller. Invariant factors, Julia equivalences and the (abstract) Mandelbrot set. Lecture Notes in Mathematics, 1732. Springer-Verlag, Berlin, 2000. CMP 2000:13
  • [Ki1] J. Kiwi, Rational Rays and Critical Portraits of Complex Polynomials, Thesis, SUNY at Stony Brook, 1997. (Stony Brook IMS Preprint 1997/15)
  • [Ki2] J. Kiwi, Rational laminations of complex polynomials, pp 111-154 in Laminations and Foliations in Geometry, Topology and Dynamics, ed. M. Lyubich et al., Contemporary Mathematics 269, 2001. CMP 2001:08
  • [L] G. Levin, On backward stability of holomorphic dynamical systems, Fund. Math. 158 (1998), no. 2, 97–107. MR 1656942
  • [M1] J. Milnor, Dynamics in one complex variable: Introductory Lectures, Vieweg, 1999. CMP 2000:03
  • [M2] J. Milnor, Periodic orbits, external rays and the Mandelbrot set: an expository account, pp 277-331 in Géométrie complexe et sytèmes dynamiques (Orsay, 1995), edited by M. Flexor et al., Astérique 261, 2000.
  • [Th] W. P. Thurston, On the combinatorics of iterated rational maps, Manuscript, 1985.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37F10, 37F20

Retrieve articles in all journals with MSC (2000): 37F10, 37F20


Additional Information

Jan Kiwi
Affiliation: Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile
Email: jkiwi@mat.puc.cl

DOI: https://doi.org/10.1090/S0002-9947-01-02896-3
Received by editor(s): April 11, 2000
Received by editor(s) in revised form: March 29, 2001
Published electronically: November 20, 2001
Additional Notes: Supported by “Proyecto Fondecyt #1990436”, “Fundación Andes, Chile” and “Cátedra Presidencial en Geometría”.
Article copyright: © Copyright 2001 American Mathematical Society