Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Monge’s transport problem on a Riemannian manifold
HTML articles powered by AMS MathViewer

by Mikhail Feldman and Robert J. McCann PDF
Trans. Amer. Math. Soc. 354 (2002), 1667-1697

Abstract:

Monge’s problem refers to the classical problem of optimally transporting mass: given Borel probability measures $\mu ^+ \ne \mu ^-$, find the measure-preserving map $s:M \longrightarrow M$ between them which minimizes the average distance transported. Set on a complete, connected, Riemannian manifold $M$ — and assuming absolute continuity of $\mu ^+$ — an optimal map will be shown to exist. Aspects of its uniqueness are also established.
References
  • L. Ambrosio. Lecture notes on optimal transport problems. \text{Preprint}.
  • J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
  • L. Caffarelli, M. Feldman, R.J. McCann. Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Amer. Math. Soc. 15 (2002), 1–26.
  • Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0458335
  • Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
  • Lawrence C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current developments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, MA, 1999, pp. 65–126. MR 1698853
  • L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137 (1999), no. 653, viii+66. MR 1464149, DOI 10.1090/memo/0653
  • L.C. Evans, R.F. Gariepy. Measure theory and fine properties of functions. CRC Press, 1992.
  • Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
  • Mikhail Feldman, Variational evolution problems and nonlocal geometric motion, Arch. Ration. Mech. Anal. 146 (1999), no. 3, 221–274. MR 1720391, DOI 10.1007/s002050050142
  • M. Feldman, R.J. McCann. Uniqueness and transport density in Monge’s mass transportation problem. To appear in Calc. Var. Partial Differential Equations.
  • Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
  • Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
  • R.J. McCann. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001), 589–608.
  • G. Monge. Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pages 666–704, 1781.
  • Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
  • Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
  • Dunham Jackson, A class of orthogonal functions on plane curves, Ann. of Math. (2) 40 (1939), 521–532. MR 80, DOI 10.2307/1968936
  • N.S. Trudinger, X.-J. Wang. On the Monge mass transfer problem. Calc. Var. Partial Differential Equations, 13 (2001), no. 1, 19–31.
  • C. Villani. Topics in mass transportation. In preparation.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 49Q20, 28A50
  • Retrieve articles in all journals with MSC (2000): 49Q20, 28A50
Additional Information
  • Mikhail Feldman
  • Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
  • MR Author ID: 226925
  • Email: feldman@math.wisc.edu
  • Robert J. McCann
  • Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
  • MR Author ID: 333976
  • ORCID: 0000-0003-3867-808X
  • Email: mccann@math.toronto.edu
  • Received by editor(s): March 30, 2001
  • Published electronically: December 4, 2001
  • Additional Notes: The authors gratefully acknowledge the support of grants DMS 0096090 [MF] and 0074037 [MF and RJM] of the U.S. National Science Foundation, and grant 217006-99 [RJM] of the Natural Sciences and Engineering Research Council of Canada.
  • © Copyright 2001 by the authors
  • Journal: Trans. Amer. Math. Soc. 354 (2002), 1667-1697
  • MSC (2000): Primary 49Q20, 28A50
  • DOI: https://doi.org/10.1090/S0002-9947-01-02930-0
  • MathSciNet review: 1873023