Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Monge's transport problem on a Riemannian manifold


Authors: Mikhail Feldman and Robert J. McCann
Journal: Trans. Amer. Math. Soc. 354 (2002), 1667-1697
MSC (2000): Primary 49Q20, 28A50
Published electronically: December 4, 2001
MathSciNet review: 1873023
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Monge's problem refers to the classical problem of optimally transporting mass: given Borel probability measures $\mu^+ \ne \mu^-$, find the measure-preserving map $s:M \longrightarrow M$ between them which minimizes the average distance transported. Set on a complete, connected, Riemannian manifold $M$ -- and assuming absolute continuity of $\mu^+$ -- an optimal map will be shown to exist. Aspects of its uniqueness are also established.


References [Enhancements On Off] (What's this?)

  • 1. L. Ambrosio.
    Lecture notes on optimal transport problems.
    Preprint.
  • 2. L. Caffarelli.
    Allocation maps with general cost functions.
    In P. Marcellini et al., editor, Partial Differential Equations and Applications, number 177 in Lecture Notes in Pure and Appl. Math., pages 29-35. Dekker, New York, 1996. MR 97f:99055
  • 3. L. Caffarelli, M. Feldman, R.J. McCann.
    Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs.
    J. Amer. Math. Soc. 15 (2002), 1-26.
  • 4. Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam, 1975. North-Holland Mathematical Library, Vol. 9. MR 0458335 (56 #16538)
  • 5. Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207 (92i:53001)
  • 6. Lawrence C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current developments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, MA, 1999, pp. 65–126. MR 1698853 (2000e:49001)
  • 7. L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137 (1999), no. 653, viii+66. MR 1464149 (99g:35132), http://dx.doi.org/10.1090/memo/0653
  • 8. L.C. Evans, R.F. Gariepy.
    Measure theory and fine properties of functions.
    CRC Press, 1992.
  • 9. Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325 (41 #1976)
  • 10. Mikhail Feldman, Variational evolution problems and nonlocal geometric motion, Arch. Ration. Mech. Anal. 146 (1999), no. 3, 221–274. MR 1720391 (2000h:35066), http://dx.doi.org/10.1007/s002050050142
  • 11. M. Feldman, R.J. McCann.
    Uniqueness and transport density in Monge's mass transportation problem.
    To appear in Calc. Var. Partial Differential Equations.
  • 12. L. Kantorovitch, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 199–201. MR 0009619 (5,174d)
  • 13. Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1982. MR 666697 (84j:53001)
  • 14. R.J. McCann.
    Polar factorization of maps on Riemannian manifolds.
    Geom. Funct. Anal. 11 (2001), 589-608.
  • 15. G. Monge.
    Mémoire sur la théorie des déblais et de remblais.
    Histoire de l'Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pages 666-704, 1781.
  • 16. Svetlozar T. Rachev and Ludger Rüschendorf, Mass transportation problems. Vol. I, Probability and its Applications (New York), Springer-Verlag, New York, 1998. Theory. MR 1619170 (99k:28006)
    Svetlozar T. Rachev and Ludger Rüschendorf, Mass transportation problems. Vol. II, Probability and its Applications (New York), Springer-Verlag, New York, 1998. Applications. MR 1619171 (99k:28007)
  • 17. Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish Inc., Wilmington, Del., 1979. MR 532830 (82g:53003a)
  • 18. V. N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions, Proc. Steklov Inst. Math. 2 (1979), i–v, 1–178. Cover to cover translation of Trudy Mat. Inst. Steklov 141 (1976). MR 530375 (80e:60052)
  • 19. N.S. Trudinger, X.-J. Wang.
    On the Monge mass transfer problem.
    Calc. Var. Partial Differential Equations, 13 (2001), no. 1, 19-31.
  • 20. C. Villani.
    Topics in mass transportation.
    In preparation.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 49Q20, 28A50

Retrieve articles in all journals with MSC (2000): 49Q20, 28A50


Additional Information

Mikhail Feldman
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Email: feldman@math.wisc.edu

Robert J. McCann
Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
Email: mccann@math.toronto.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-01-02930-0
PII: S 0002-9947(01)02930-0
Keywords: Monge-Kantorovich mass transportation, Riemannian manifold, optimal map, dual problem
Received by editor(s): March 30, 2001
Published electronically: December 4, 2001
Additional Notes: The authors gratefully acknowledge the support of grants DMS 0096090 [MF] and 0074037 [MF and RJM] of the U.S. National Science Foundation, and grant 217006-99 [RJM] of the Natural Sciences and Engineering Research Council of Canada.
Article copyright: © Copyright 2001 by the authors