Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



An analogue of minimal surface theory in $\operatorname{SL}(n,\mathbf C)/\operatorname{SU}(n)$

Authors: M. Kokubu, M. Takahashi, M. Umehara and K. Yamada
Journal: Trans. Amer. Math. Soc. 354 (2002), 1299-1325
MSC (2000): Primary 53A10; Secondary 53A35, 53A07
Published electronically: November 19, 2001
MathSciNet review: 1873007
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We shall discuss the class of surfaces with holomorphic right Gauss maps in non-compact duals of compact semi-simple Lie groups (e.g. $\operatorname{SL}(n,\mathbf{C})/\operatorname{SU}(n)$), which contains minimal surfaces in $\mathbf{R}^n$ and constant mean curvature $1$ surfaces in $\mathcal{H}^3$. A Weierstrass type representation formula and a Chern-Osserman type inequality for such surfaces are given.

References [Enhancements On Off] (What's this?)

  • [B] R. Bryant, Surfaces of constant mean curvature one in hyperbolic space, Astérisque Vol. 154-155, (1987), 321-347. CMP 20:16
  • [CL] E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, 1955. MR 16:1022b
  • [CO] S. Chern and R. Osserman, Complete minimal surface in euclidean $n$-space, J. Analyse Math. 19 (1967) 15-34. MR 37:2103
  • [F] R. Finn, On a class of conformal metrics with application to geometry in large, Comm. Math. Helv. 40 (1965) 1-30. MR 34:3467
  • [H] S. Helgason, Differential Geometry, Lie groups, and Symmetric Spaces, Academic Press, New York-San Francisco-London, 1978. MR 80k:53081
  • [KUY] M. Kokubu, M. Umehara and K. Yamada, Minimal surfaces that attain equality in the Chern-Osserman inequality, preprint, math.DG/0102037.
  • [L] H. B. Lawson, Lectures on minimal submanifolds (Volume 1), Publish or Perish Inc., 1980. MR 82d:53035b
  • [RUY] W. Rossman, M. Umehara and K. Yamada, Irreducible constant mean curvature 1 surfaces in hyperbolic space with positive genus, Tôhoku Math. J. 49 (1997), 449-484 MR 99a:53025
  • [UY1] M. Umehara and K. Yamada, Complete surfaces of constant mean curvature-$1$in the hyperbolic $3$-space, Ann. of Math. 137 (1993), 611-638. MR 94c:53015
  • [UY2] M. Umehara and K. Yamada, A parametrization of Weierstrass formulae and perturbation of some complete minimal surfaces of ${\mathbf R}^3$ into the hyperbolic $3$-space, J. Reine Angew. Math. 432 (1992), 93-116. MR 94e:54004
  • [UY3] M. Umehara and K. Yamada, Surfaces of constant mean curvature $c$in $H^3(-c^2)$ with prescribed hyperbolic Gauss map, Math. Ann. 304 (1996), 203-224. MR 97b:53017
  • [UY4] M. Umehara and K. Yamada, A duality on CMC-1 surface in the hyperbolic $3$-space and a hyperbolic analogue of the Osserman Inequality, Tsukuba J. Math. 21 (1997), 229-237. MR 99e:53012
  • [Y] Z. Yu, The value distribution of the hyperbolic Gauss map, Proc. Amer. Math. Soc. 125 (1997) 2997-3001 MR 97m:53016
  • [Y2] Z. Yu, The inverse surface and the Osserman inequality, Tsukuba J. Math. 22 (1998) 57-588. MR 2000c:53008

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53A10, 53A35, 53A07

Retrieve articles in all journals with MSC (2000): 53A10, 53A35, 53A07

Additional Information

M. Kokubu
Affiliation: Department of Natural Science, School of Engineering, Tokyo Denki University, 2-2, Kanda-Nishiki-Cho, Chiyoda-Ku, Tokyo, 101-8457 Japan

M. Takahashi
Affiliation: Department of General Education, Kurume National College of Technology, Kurume, Fukuoka 830-8555, Japan

M. Umehara
Affiliation: Department of Mathematics, Faculty of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

K. Yamada
Affiliation: Faculty of Mathematics, Kyushu University 36, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan

Received by editor(s): March 8, 2001
Published electronically: November 19, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society