Weak amenability of triangular Banach algebras
Authors:
B. E. Forrest and L. W. Marcoux
Journal:
Trans. Amer. Math. Soc. 354 (2002), 14351452
MSC (2000):
Primary 46H25, 16E40
Published electronically:
December 4, 2001
MathSciNet review:
1873013
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let and be unital Banach algebras, and let be a Banach module. Then becomes a triangular Banach algebra when equipped with the Banach space norm . A Banach algebra is said to be weakly amenable if all derivations from into its dual space are inner. In this paper we investigate Arens regularity and weak amenability of a triangular Banach algebra in relation to that of the algebras , and their action on the module .
 1.
W.
G. Bade, P.
C. Curtis Jr., and H.
G. Dales, Amenability and weak amenability for Beurling and
Lipschitz algebras, Proc. London Math. Soc. (3) 55
(1987), no. 2, 359–377. MR 896225
(88f:46098), http://dx.doi.org/10.1093/plms/s355_2.359
 2.
W.
G. Bade, H.
G. Dales, and Z.
A. Lykova, Algebraic and strong splittings of extensions of Banach
algebras, Mem. Amer. Math. Soc. 137 (1999),
no. 656, viii+113. MR 1491607
(99g:46059), http://dx.doi.org/10.1090/memo/0656
 3.
Erik
Christensen, Derivations of nest algebras, Math. Ann.
229 (1977), no. 2, 155–161. MR 0448110
(56 #6420)
 4.
Paul
Civin and Bertram
Yood, The second conjugate space of a Banach algebra as an
algebra, Pacific J. Math. 11 (1961), 847–870.
MR
0143056 (26 #622)
 5.
H.
G. Dales, F.
Ghahramani, and N.
Grønbæk, Derivations into iterated duals of Banach
algebras, Studia Math. 128 (1998), no. 1,
19–54. MR
1489459 (99g:46064)
 6.
Kenneth
R. Davidson, Nest algebras, Pitman Research Notes in
Mathematics Series, vol. 191, Longman Scientific & Technical,
Harlow; copublished in the United States with John Wiley & Sons, Inc.,
New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
(90f:47062)
 7.
B.
E. Forrest and L.
W. Marcoux, Derivations of triangular Banach algebras, Indiana
Univ. Math. J. 45 (1996), no. 2, 441–462. MR 1414337
(97m:46079), http://dx.doi.org/10.1512/iumj.1996.45.1147
 8.
F.
L. Gilfeather and R.
R. Smith, Cohomology for operator algebras: joins, Amer. J.
Math. 116 (1994), no. 3, 541–561. MR 1277445
(95d:46077), http://dx.doi.org/10.2307/2374990
 9.
U.
Haagerup, All nuclear 𝐶*algebras are amenable,
Invent. Math. 74 (1983), no. 2, 305–319. MR 723220
(85g:46074), http://dx.doi.org/10.1007/BF01394319
 10.
Barry
Edward Johnson, Cohomology in Banach algebras, American
Mathematical Society, Providence, R.I., 1972. Memoirs of the American
Mathematical Society, No. 127. MR 0374934
(51 #11130)
 11.
Richard
V. Kadison, Derivations of operator algebras, Ann. of Math.
(2) 83 (1966), 280–293. MR 0193527
(33 #1747)
 12.
Gerard
J. Murphy, 𝐶*algebras and operator theory, Academic
Press, Inc., Boston, MA, 1990. MR 1074574
(91m:46084)
 13.
Theodore
W. Palmer, Banach algebras and the general theory of *algebras.
Vol. I, Encyclopedia of Mathematics and its Applications,
vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and
Banach algebras. MR 1270014
(95c:46002)
 14.
Shôichirô
Sakai, Derivations of 𝑊*algebras, Ann. of Math. (2)
83 (1966), 273–279. MR 0193528
(33 #1748)
 1.
 Bade, W.G., Curtis, P.C. and Dales, H.G., Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), 359377. MR 88f:46098
 2.
 Bade, W.G., Dales, H.G. and Lykova, Z.A., Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc., 137 (1999), No. 656.MR 99g:46059
 3.
 Christensen, E., Derivations of nest algebras, Math. Ann., 229 (1977), 155161.MR 56:6420
 4.
 Civin, P. and Yood, B., The second conjugate space of a Banach algebra as an algebra, Pacific J. Math., 11 (1961), 847870.MR 26:622
 5.
 Dales, H.G., Ghahramani, F. and Grønbæk, N., Derivations into iterated duals of Banach algebras, Studia Math., 128 (1998), 1954. MR 99g:46064
 6.
 Davidson, K.R., Nest Algebras, Pitman Research Notes in Mathematics, no. 191, Longman Scientific and Technical, London, 1988.MR 90f:47062
 7.
 Forrest, B.E. and Marcoux, L.W., Derivations of triangular Banach algebras, Indiana Univ. Math. J. 45 (1996), 441462.MR 97m:46079
 8.
 Gilfeather, F. and Smith, R.R., Cohomology for operator algebras: joins, Amer. J. Math. 116 (1994), 541561. MR 95d:46077
 9.
 Haagerup, U., All nuclear algebras are amenable, Invent. Math. 74 (1983), 305319. MR 85g:46074
 10.
 Johnson, B.E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1992). MR 51:11130
 11.
 Kadison, R.V., Derivations of operator algebras, Ann. Math., 83 (1966), 280293. MR 33:1747
 12.
 Murphy, G.J., Algebras and Operator Theory, Academic Press, San Diego, 1990. MR 91m:46084
 13.
 Palmer, T.W., Banach algebras and the general theory of algebras, Vol. 1, Algebras and Banach Algebras, Cambridge Univ. Press, 1994. MR 95c:46002
 14.
 Sakai, S., Derivations of algebras, Ann. Math., 83 (1966), 273279.MR 33:1748
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
46H25,
16E40
Retrieve articles in all journals
with MSC (2000):
46H25,
16E40
Additional Information
B. E. Forrest
Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email:
beforres@math.uwaterloo.ca
L. W. Marcoux
Affiliation:
Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Address at time of publication:
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email:
L.Marcoux@ualberta.ca, LWMarcoux@math.uwaterloo.ca
DOI:
http://dx.doi.org/10.1090/S0002994701029579
PII:
S 00029947(01)029579
Received by editor(s):
October 9, 1998
Received by editor(s) in revised form:
July 20, 1999
Published electronically:
December 4, 2001
Additional Notes:
Research supported in part by NSERC (Canada)
Article copyright:
© Copyright 2001
American Mathematical Society
