Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Principal bundles over a projective scheme


Author: Donghoon Hyeon
Journal: Trans. Amer. Math. Soc. 354 (2002), 1899-1908
MSC (2000): Primary 14D20
DOI: https://doi.org/10.1090/S0002-9947-01-02933-6
Published electronically: November 21, 2001
MathSciNet review: 1881022
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of a quasi-projective moduli scheme for principal bundles over an arbitrary projective scheme.


References [Enhancements On Off] (What's this?)

  • 1. P. Aspinwall, and R. Donagi, The Heterotic String, the Tangent Bundle, and Derived Categories, Adv.Theor.Math.Phys. 2 (1998) 1041-1074. MR 2000b:81116
  • 2. B. Balaji and C.S, Seshadri, Semistable principal bundles, Preprint (1999).
  • 3. R. Donagi, Taniguchi Lecture on Principal Bundles on Elliptic Fibrations, Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997; M.-H. Saito et al., eds.), World Sci. Publ., River Edge, NJ, 1998, pp. 33-46. MR 2000a:14015
  • 4. -, Principal bundles on elliptic fibrations, Asian J. Math. 1 (1997), 214-223.MR 99d:14010
  • 5. R. Friedman and J. W. Morgan, Holomorphic principal bundles over elliptic curves, Preprint (1998), math.AG/9811130.
  • 6. R. Friedman and J. W. Morgan, Holomorphic principal bundles over elliptic curves II : The parabolic construction, Preprint (2000), math.AG/0006174.
  • 7. R. Friedman, J. W. Morgan, and E. Witten, Principal $G$-bundles over elliptic curves, Math. Res. Lett. 5 (1998), 97-118.MR 99j:14037
  • 8. D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106 (1977), 45-60.MR 81h:14014
  • 9. A. Grothendieck, Technique de decente et théorèmes d'existence en géométrie algébrique IV. Les Schémas de Hilbert., Séminaire Bourbaki, t. 13, 1960/61, no. 221.MR 27:1339
  • 10. A. Grothendieck et J. Dieudonné, Éléments de Géometrie Algébrique, Inst. des Hautes Études Sci., Publ. Math. Nos. 4, 8, 11, 17, 22, 24, 28, 32 (1960-67). MR 29:1210; MR 30:3885; MR 33:7330; MR 36:177; MR 36:178; MR 39:220
  • 11. D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics, E 31, Vieweg (1997).MR 98g:14012
  • 12. D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, Third Enlarged Edition, Springer-Verlag (1994).MR 95m:14012
  • 13. A. Ramanathan, Moduli for principal bundles over algebraic curves I, II, Proc. Indian Acad. Sci. (Math. Sci.), 106 (1996), 301-328 and 421-444.MR 98b:14009
  • 14. A. Ramanathan and S. Subramanian, Einstein-Hermitian connections on principal bundles and stability, J. reine. angew. Math. 390 (1988), 21-31. MR 90b:32057
  • 15. C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. Math., 95 (1972) 511-556.MR 46:9044
  • 16. C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, II, Inst Hautes Études Sci. Publ. Math. 79 (1994), 47-129 and 80 (1995), 5-79.MR 96e:14012; MR 96e:14013

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14D20

Retrieve articles in all journals with MSC (2000): 14D20


Additional Information

Donghoon Hyeon
Affiliation: Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, Illinois 61801
Address at time of publication: Department of Mathematics, Rice University, 6100 S. Main St., Houston, Texas 77005
Email: hyeon@math.rice.edu

DOI: https://doi.org/10.1090/S0002-9947-01-02933-6
Received by editor(s): September 4, 2000
Received by editor(s) in revised form: March 8, 2001
Published electronically: November 21, 2001
Additional Notes: The author thanks Chris Sim at 3Com for his computing equipment support.
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society