Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$A_p$ weights for nondoubling measures in $R^n$ and applications


Authors: Joan Orobitg and Carlos Pérez
Journal: Trans. Amer. Math. Soc. 354 (2002), 2013-2033
MSC (2000): Primary 42B25, 42B20
DOI: https://doi.org/10.1090/S0002-9947-02-02922-7
Published electronically: January 11, 2002
MathSciNet review: 1881028
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study an analogue of the classical theory of $A_p(\mu)$weights in $\mathbb{R} ^n $ without assuming that the underlying measure $\mu$is doubling. Then, we obtain weighted norm inequalities for the (centered) Hardy-Littlewood maximal function and corresponding weighted estimates for nonclassical Calderón-Zygmund operators. We also consider commutators of those Calderón- Zygmund operators with bounded mean oscillation functions ($BMO$), extending the main result from R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. Finally, we study self-improving properties of Poincaré-B.M.O. type inequalities within this context; more precisely, we show that if $f$ is a locally integrable function satisfying $\frac{1}{\mu(Q)}\int_{Q} \vert f-f_{Q}\vert d\mu \le a(Q)$ for all cubes $Q$, then it is possible to deduce a higher $L^p$ integrability result for $f$, assuming a certain simple geometric condition on the functional $a$.


References [Enhancements On Off] (What's this?)

  • [BeL] J. Bergh and J. Löfström, ``Interpolation Spaces," Springer-Verlag, 1976. MR 58:2349
  • [ChF] M. Christ and R. Fefferman, A note on weighted norm inequalities for the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 12 (1983), 447-448. MR 84g:42017
  • [C] R. Coifman, Distribution function inequalities for singular integrals, Proc. Acad. Sci. U.S.A. 69 (1972), 2838-2839. MR 46:2364
  • [CF] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals , Studia Math. 51 (1974), 241-250. MR 50:10670
  • [CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. MR 54:843
  • [CR] R. Coifman and R. Rochberg, Another characterization of $BMO$, Proc. Amer. Math. Soc. 79 (1980), 249-254. MR 81b:42067
  • [FPW] B. Franchi, C. Pérez and R. L. Wheeden, Self-Improving Properties of John-Nirenberg and Poincaré Inequalities on Spaces of Homogeneous Type, J. Funct. Anal. 153 (1998), 108-146. MR 99d:42042
  • [GCRdF] J. García-Cuerva and J.L. Rubio de Francia, ``Weighted Norm Inequalities and Related Topics," North Holland Math. Studies 116, North Holland, Amsterdam, 1985. MR 87d:42023
  • [GMOPST] P. Gurka, P., F. J. Martín-Reyes, P. Ortega, L. Pick, M. D. Sarrión and A. de la Torre, Good and bad measures, J. London Math. Soc. (2) 61 (2000), no. 1, 123-138. MR 2001e:26022
  • [Ja] B. Jawerth, Weighted inequalities for maximal operators: linearization, localization, and factorization, Amer. J. Math. 108 (1986), 361-414. MR 87f:42048
  • [MP] P. MacManus and C. Pérez, Generalized Poincaré inequalities: Sharp self-improving properties, Internat. Math. Res. Notices, 1998 (2), 101- 116.MR 99k:42045
  • [MMNO] J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for nondoubling measures, Duke Math. J. 102 (2000), 533-565. MR 2001e:26019
  • [NTV1] F. Nazarov, S. Treil and A. Volberg, Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 1997 (15), 703-726. MR 99e:42028
  • [NTV2] F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 1998 (9), 463-487. MR 99f:42035
  • [Sa] E. Saksman, The local mapping properties of the Hilbert transform, preprint 1999.
  • [St] E. M. Stein, ``Harmonic Analysis," Princeton Univ. Press, Princeton, NJ, 1993. MR 95c:42002
  • [T1] X. Tolsa, $L^2$-boundedness of the Cauchy integral operator for continuous measures, Duke Math. J. 98 (1999), 269-304. MR 2000d:31001
  • [T2] X. Tolsa, Cotlar's inequality and existence of principal values for the Cauchy integral wihout the doubling condition, J. Reine Angew. Math. 502 (1998), 199-235.MR 2000a:42030
  • [T3] X. Tolsa, $BMO$, $H^1$ and Calderón-Zygmund operators for non doubling measures, Math. Ann. 319 (2001), 89-149. CMP 2001:08
  • [V] J. Verdera, On the $T(1)$-Theorem for the Cauchy integral, Ark. Mat. 38 (2000), 183-199.MR 2001e:30074

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42B25, 42B20

Retrieve articles in all journals with MSC (2000): 42B25, 42B20


Additional Information

Joan Orobitg
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra, Spain
Email: orobitg@mat.uab.es

Carlos Pérez
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madird, 28049 Madrid, Spain
Address at time of publication: Department of Mathematical Analysis, Universidad de Sevilla, 41080 Sevilla, Spain
Email: carlos.perez@uam.es

DOI: https://doi.org/10.1090/S0002-9947-02-02922-7
Received by editor(s): February 23, 2000
Received by editor(s) in revised form: September 12, 2000
Published electronically: January 11, 2002
Additional Notes: The first author’s research was partially supported by CIRIT grant 2000 SGR00059 and by DGICYT grant BFM 2000-0361, Spain.
The second author’s research was partially supported by DGESIC grant PB98-0106, Spain.
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society