Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Subspaces of non-commutative spaces


Author: S. Paul Smith
Journal: Trans. Amer. Math. Soc. 354 (2002), 2131-2171
MSC (2000): Primary 14A22; Secondary 18E15, 16S38, 16P40, 18F99
DOI: https://doi.org/10.1090/S0002-9947-02-02963-X
Published electronically: February 14, 2002
MathSciNet review: 1885647
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns the closed points, closed subspaces, open subspaces, weakly closed and weakly open subspaces, and effective divisors, on a non-commutative space.


References [Enhancements On Off] (What's this?)

  • 1. M. Artin, J. Tate and M. Van den Bergh, Some algebras related to automorphisms of elliptic curves, in The Grothendieck Festschrift, Vol.1, 33-85, Birkhauser, Boston 1990. MR 92e:14002
  • 2. M. Artin, J. Tate and M. Van den Bergh, Modules over regular algebras of dimension 3, Invent. Math., 106 (1991) 335-388. MR 93e:16055
  • 3. M. Artin and J. Zhang, Non-commutative Projective Schemes, Adv. Math., 109 (1994), 228-287. MR 96a:14004
  • 4. M.J. Asensio, M. Van den Bergh, and F. Van Oystaeyen, A new algebraic approach to microlocalization of filtered rings, Trans. Amer. Math. Soc., 316 (1989) 537-553. MR 90c:16001
  • 5. G. Cauchon, Les T-anneaux, la condition (H) de Gabriel et ses conséquences, Comm. Alg., 4 (1976) 11-50. MR 52:13922
  • 6. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. MR 38:1144
  • 7. K.R. Goodearl and R.B. Warfield, An Introduction to Noncommutative Noetherian Rings, Lond. Math. Soc. Texts, no. 16, Camb. Univ. Press, Cambridge, 1989. MR 91c:16001
  • 8. A. Grothendieck (with P. Berthelot and L. Illusie), Théorie des intersections et Théorème de Riemann-Roch (SGA 6), Lecture Notes in Math. 225, Springer-Verlag, Berlin/New York, 1971. MR 50:7133
  • 9. R. Hartshorne, Residues and Duality, Lecture Notes in Math. 20, Springer-Verlag, Berlin/New York, 1966. MR 36:5145
  • 10. R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977. MR 57:3116
  • 11. P. Jørgensen, Intersection theory on non-commutative surfaces, Trans. Amer. Math. Soc., 352 (2000) 5817-5854. MR 2001b:14005
  • 12. P. Jørgensen and S.P. Smith, Curves on non-commutative surfaces, in preparation.
  • 13. P. Jørgensen and S.P. Smith, Intersection theory for the blow-up of a non-commutative surface, in preparation.
  • 14. A. Joyal and R. Street, An introduction to Tannaka duality and quantum groups, pp. 413-492 in Category Theory, Proceedings, Como 1990, Eds. A. Carboni, M.C. Pedicchio, G. Rosolini, Lect. Notes in Math., vol. 1488, Springer Verlag, 1991. MR 93f:18015
  • 15. A. Kapustin, A. Kuznetzov, and D. Orlov, Noncommutative Instantons and Twistor Transform, Comm. Math. Phys. 221 (2001), 385-432.
  • 16. L. Le Bruyn and M. Van den Bergh, On quantum spaces of Lie algebras, Proc. Amer. Math. Soc., 119 (1993) 407-414. MR 93k:17021
  • 17. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley and Sons, 1987. MR 89j:16023
  • 18. C. Pappacena, The injective spectrum of a non-commutative space, manuscript, February 2001, QA 0108175.
  • 19. N. Popescu, Abelian Categories with Applications to Rings and Modules, Academic Press (Lond. Math. Soc. Monographs), 1973. MR 49:5130
  • 20. A.L. Rosenberg, Non-commutative algebraic geometry and representations of quantized algebras, Vol. 330, Kluwer Academic Publishers, 1995. MR 97b:14004
  • 21. A.L. Rosenberg, Non-commutative schemes, Compos. Math., 112 (1998) 93-125. MR 99h:14002
  • 22. S.P. Smith and J. Zhang, Curves on quasi-schemes, Algebras and Representation Theory, 1 (1998) 311-351. MR 2001a:16046
  • 23. S.P. Smith, Integral non-commutative spaces, J. Algebra, to appear, QA 0104046.
  • 24. S.P. Smith, Maps between non-commutative spaces, Preprint, University of Washington, 2000.
  • 25. M. Van den Bergh, Blowing up on non-commutative smooth surfaces, Mem. Amer. Math. Soc., 154 (2001), No. 734.
  • 26. M. Van Gastel and M. Van den Bergh, Graded modules of Gelfand-Kirillov dimension one over three-dimensional Artin-Schelter regular algebras, J. Algebra, 196 (1997), 697-707. MR 99c:16020
  • 27. A.B. Verevkin, On a non-commutative analogue of the category of coherent sheaves on a projective scheme, Amer. Math. Soc. Transl. (2) 151 (1992) 41-53. MR 93j:14002

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14A22, 18E15, 16S38, 16P40, 18F99

Retrieve articles in all journals with MSC (2000): 14A22, 18E15, 16S38, 16P40, 18F99


Additional Information

S. Paul Smith
Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
Email: smith@math.washington.edu

DOI: https://doi.org/10.1090/S0002-9947-02-02963-X
Received by editor(s): November 28, 2000
Received by editor(s) in revised form: April 5, 2001, and September 20, 2001
Published electronically: February 14, 2002
Additional Notes: The author was supported by NSF grant DMS-0070560
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society