Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

A priori degeneracy of one-dimensional rotation sets for periodic point free torus maps


Author: Jaroslaw Kwapisz
Journal: Trans. Amer. Math. Soc. 354 (2002), 2865-2895
MSC (1991): Primary 37E45, 37E30
DOI: https://doi.org/10.1090/S0002-9947-02-02952-5
Published electronically: March 7, 2002
MathSciNet review: 1895207
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Diffeomorphisms of the two torus that are isotopic to the identity have rotation sets that are convex compact subsets of the plane. We show that certain line segments (including all rationally sloped segments with no rational points) cannot be realized as a rotation set.


References [Enhancements On Off] (What's this?)

  • 1. L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966. MR 34:336
  • 2. L. Alseda, J. Llibre, and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific, Singapore, 1993. MR 95j:58042
  • 3. C. Baesens, J. Guckenheimer, S. Kim, and R. MacKay, Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos, Physica D 49 (1991), 387-475. MR 93c:58155
  • 4. G. E. Bredon, Topology and geometry, Springer, New York, 1993.
  • 5. P. Le Calvez, Propriétés dynamiques des difféomorphismes de l'anneau et du tore, Astérisque, vol. 204, 1991. MR 94d:58092
  • 6. J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc. 311 (1989), 107-115. MR 89k:58239
  • 7. -, A new proof of the Brouwer plane translation theorem, Erg. Th. & Dyn. Sys. 12 (1992), 217-226. MR 93m:58059
  • 8. -, The rotation set and periodic points for torus homeomorphisms, Dynamical systems and chaos, Vol. 1, World Sci. Publishing, River Edge, NJ, 1995, p. 41. MR 98j:58092
  • 9. -, Rotation vectors and fixed points of area preserving surface diffeomorphisms, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2637-2662. MR 96i:58143
  • 10. J. Franks and M. Misiurewicz, Rotation sets of toral flows, Proc. Amer. Math. Soc. 109 (1990), 243-249. MR 90i:58091
  • 11. D. Fried, The geometry of cross sections to flows, Topology 21 (1982), 353-371. MR 84d:58068
  • 12. M. Handel, Periodic point free homeomorphisms of ${\mathbf T}^2$, Proc. Amer. Math. Soc. 107 (1989), 511-515. MR 90c:58168
  • 13. M. R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2, Comment. Math. Helv. 58 (1983), 453-502. MR 85g:58057
  • 14. -, Some open problems in dynamical systems, 1998, Doc. Math. Extra Volume II, ICM Proc. Internat. Congr. Math., vol. II (Berlin, 1998), 797-808. MR 99i:58047
  • 15. R. A. Johnson, Ergodic theory and linear differential equations, J. Differential Equations 28 no. 1 (1978), 23-34. MR 80c:34044
  • 16. R. A. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. in Math. Phys. 84 (1982), 403-438. MR 83h:34018
  • 17. L.B. Jonker and L. Zhang, Torus homeomorphisms whose rotation sets have empty interior, Erg. Th. & Dyn. Sys. 18 (1998), 1173-1185. MR 99h:58147
  • 18. J. Kwapisz, Every convex rational polygon is a rotation set, Erg. Th. & Dyn. Sys. 12 (1992), 333-339. MR 93g:58082
  • 19. -, Rotation sets and entropy, SUNY at Stony Brook PhD thesis, 1995.
  • 20. -, A toral diffeomorphism with a non-polygonal rotation set, Nonlinearity 8 (1995), 461-476. MR 96j:58099
  • 21. -, Poncaré rotation number for maps of the real line with almost periodic displacement, Nonlinearity 13 (2000), 1841-1854. MR 2001h:37089
  • 22. -, Combinatorics of torus diffeomorphisms, to be published in Erg. Th. & Dyn. Sys., 2001.
  • 23. -, Renormalizing torus and annulus maps, in progress, 2001.
  • 24. O. Lehto and K.I. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York, 1973. MR 49:9202
  • 25. J. Llibre and R. MacKay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Erg. Th. & Dyn. Sys. 11 (1991), 115-128. MR 92b:58184
  • 26. R. Mañé, Ergodic theory and differentiable dynamics, Springer, Berlin, 1987. MR 88c:58040
  • 27. D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Science Publications, New York, 1998. MR 2000g:53098
  • 28. M. Misiurewicz and K. Ziemian, Rotation sets for maps of tori, J. London Math. Soc. 40 (1989), 490-506. MR 91f:58052
  • 29. -, Rotation sets and ergodic measures for torus homeomorphisms, Fund. Math. 137 (1991), 45-52. MR 92d:58106
  • 30. E. E. Moise, Geometric topology in dimmensions 2 and 3, Springer, New York, 1977. MR 58:7631
  • 31. E. Slaminka, A Brouwer translation theorem for free homeomorphisms, Trans. Amer. Math. Soc. 277 (1988), 277-291. MR 89c:54081
  • 32. V. V. Veremenyuk, The existence of the rotation number for the equation $x' = \lambda(t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$, Differentsialnye Uravneniya 27 No 6 (1991), 1073-1076, in Russian. MR 92h:34098

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 37E45, 37E30

Retrieve articles in all journals with MSC (1991): 37E45, 37E30


Additional Information

Jaroslaw Kwapisz
Affiliation: Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717-2400
Email: jarek@math.montana.edu

DOI: https://doi.org/10.1090/S0002-9947-02-02952-5
Received by editor(s): January 10, 2001
Received by editor(s) in revised form: August 31, 2001
Published electronically: March 7, 2002
Additional Notes: Partially supported by NSF grant DMS-9970725 and MONTS-190729.
Article copyright: © Copyright 2002 Jaroslaw Kwapisz

American Mathematical Society