Vertices for characters of -solvable groups

Author:
Gabriel Navarro

Journal:
Trans. Amer. Math. Soc. **354** (2002), 2759-2773

MSC (2000):
Primary 20C15

Published electronically:
March 14, 2002

MathSciNet review:
1895202

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that is a finite -solvable group. We associate to every irreducible complex character of a canonical pair , where is a -subgroup of and , uniquely determined by up to -conjugacy. This pair behaves as a Green vertex and partitions into ``families" of characters. Using the pair , we give a canonical choice of a certain -radical subgroup of and a character associated to which was predicted by some conjecture of G. R. Robinson.

**[1]**Laurence Barker,*Defects of irreducible characters of 𝑝-soluble groups*, J. Algebra**202**(1998), no. 1, 178–184. MR**1614190**, 10.1006/jabr.1997.7139**[2]**Dilip Gajendragadkar,*A characteristic class of characters of finite 𝜋-separable groups*, J. Algebra**59**(1979), no. 2, 237–259. MR**543247**, 10.1016/0021-8693(79)90124-8**[3]**I. M. Isaacs,*Characters of 𝜋-separable groups*, J. Algebra**86**(1984), no. 1, 98–128. MR**727371**, 10.1016/0021-8693(84)90058-9**[4]**I. Martin Isaacs,*Character theory of finite groups*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Pure and Applied Mathematics, No. 69. MR**0460423****[5]**I. M. Isaacs and Gabriel Navarro,*Weights and vertices for characters of 𝜋-separable groups*, J. Algebra**177**(1995), no. 2, 339–366. MR**1355204**, 10.1006/jabr.1995.1301**[6]**I. M. Isaacs, G. Navarro, Characters of -degree of -solvable groups, to appear in J. Algebra.**[7]**Reinhard Knörr,*On the vertices of irreducible modules*, Ann. of Math. (2)**110**(1979), no. 3, 487–499. MR**554380**, 10.2307/1971234**[8]**G. Navarro,*Characters and blocks of finite groups*, London Mathematical Society Lecture Note Series, vol. 250, Cambridge University Press, Cambridge, 1998. MR**1632299****[9]**G. Navarro, Induction of characters and -subgroups, to appear in J. Algebra.**[10]**Geoffrey R. Robinson,*Local structure, vertices and Alperin’s conjecture*, Proc. London Math. Soc. (3)**72**(1996), no. 2, 312–330. MR**1367081**, 10.1112/plms/s3-72.2.312**[11]**Geoffrey R. Robinson,*Dade’s projective conjecture for 𝑝-solvable groups*, J. Algebra**229**(2000), no. 1, 234–248. MR**1765780**, 10.1006/jabr.2000.8307**[12]**Thomas R. Wolf,*Variations on McKay’s character degree conjecture*, J. Algebra**135**(1990), no. 1, 123–138. MR**1076081**, 10.1016/0021-8693(90)90153-F

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20C15

Retrieve articles in all journals with MSC (2000): 20C15

Additional Information

**Gabriel Navarro**

Affiliation:
Departament d’Àlgebra, Facultat de Matemàtiques, Universitat de València, 46100 Burjassot. València, Spain

Email:
gabriel@uv.es

DOI:
https://doi.org/10.1090/S0002-9947-02-02974-4

Received by editor(s):
March 10, 2001

Received by editor(s) in revised form:
October 10, 2001

Published electronically:
March 14, 2002

Additional Notes:
Research partially supported by DGICYT and MEC

Article copyright:
© Copyright 2002
American Mathematical Society