Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hopf modules and the double of a quasi-Hopf algebra


Author: Peter Schauenburg
Journal: Trans. Amer. Math. Soc. 354 (2002), 3349-3378
MSC (2000): Primary 16W30
DOI: https://doi.org/10.1090/S0002-9947-02-02980-X
Published electronically: April 1, 2002
MathSciNet review: 1897403
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a different proof for a structure theorem of Hausser and Nill on Hopf modules over quasi-Hopf algebras. We extend the structure theorem to a classification of two-sided two-cosided Hopf modules by Yetter-Drinfeld modules, which can be defined in two rather different manners for the quasi-Hopf case. The category equivalence between Hopf modules and Yetter-Drinfeld modules leads to a new construction of the Drinfeld double of a quasi-Hopf algebra, as proposed by Majid and constructed by Hausser and Nill.


References [Enhancements On Off] (What's this?)

  • 1. DIJKGRAAF, R., PASQUIER, V., AND ROCHE, P.
    Quasi Hopf algebras, group cohomology and orbifold models.
    Nuclear Phys. B Proc. Suppl. 18B (1990), 60-72. MR 92m:82138
  • 2. DRINFEL'D, V. G.
    Quasi-Hopf algebras.
    Leningrad Math. J. 1 (1990), 1419-1457. MR 91b:17016
  • 3. HAUSSER, F., AND NILL, F.
    Diagonal crossed products by duals of quasi-quantum groups.
    Rev. Math. Phys. 11 (1999), 553-629. MR 2000d:81069
  • 4. HAUSSER, F., AND NILL, F.
    Doubles of quasi-quantum groups.
    Comm. Math. Phys. 199 (1999), 547-589. MR 2000a:16075
  • 5. HAUSSER, F., AND NILL, F. Integral theory for quasi-Hopf algebras. preprint (math. QA/9904164).
  • 6. JOYAL, A., AND STREET, R.
    Braided tensor categories.
    Adv. in Math. 102 (1993), 20-78.
  • 7. KASSEL, C. Quantum Groups, vol. 155 of Graduate Texts in Mathematics. Springer, 1995. MR 94m:18008
  • 8. LYUBASHENKO, V.
    Hopf algebras and vector symmetries.
    Russ. Math. Surveys 41 (1988), 153-154. MR 88c:58007
  • 9. MAJID, S.
    Foundations of quantum group theory.
    Cambridge Univ. Press, 1995. MR 97g:17016
  • 10. MAJID, S.
    Quantum double for quasi-Hopf algebras.
    Lett. Math. Phys. 45 (1998), 1-9. MR 2000b:16077
  • 11. PAREIGIS, B.
    Non-additive ring and module theory I. General theory of monoids.
    Publ. Math. Debrecen 24 (1977), 189-204. MR 56:8656
  • 12. PAREIGIS, B.
    Non-additive ring and module theory II. $\mathcal C$-categories, $\mathcal C$-functors and $\mathcal C$-morphisms.
    Publ. Math. Debrecen 24 (1977), 351-361. MR 58:16834a
  • 13. SCHAUENBURG, P.
    Hopf modules and Yetter-Drinfel'd modules.
    J. Algebra 169 (1994), 874-890. MR 95j:16047
  • 14. SCHAUENBURG, P.
    Hopf algebra extensions and monoidal categories.
    preprint (2001).
  • 15. SWEEDLER, M. E.
    Hopf Algebras.
    Benjamin, New York, 1969. MR 40:5705
  • 16. TAMBARA, D.
    The coendomorphism bialgebra of an algebra.
    J. Fac. Sci. Univ. Tokyo, Sect.IA, Math. 37 (1990), 425-456. MR 91f:16048
  • 17. WORONOWICZ, S. L.
    Differential calculus on compact matrix pseudogroups (quantum groups).
    Comm. Math. Phys. 122 (1989), 125-170. MR 90g:58010

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16W30

Retrieve articles in all journals with MSC (2000): 16W30


Additional Information

Peter Schauenburg
Affiliation: Mathematisches Institut der Universität München, Theresienstr. 39, 80333 München, Germany
Email: schauen@rz.mathematik.uni-muenchen.de

DOI: https://doi.org/10.1090/S0002-9947-02-02980-X
Keywords: Quasi-Hopf algebra, quantum double, Yetter-Drinfeld module, Hopf module
Received by editor(s): April 10, 2001
Received by editor(s) in revised form: November 13, 2001
Published electronically: April 1, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society