Complex crowns of Riemannian symmetric spaces and non-compactly causal symmetric spaces

Authors:
Simon Gindikin and Bernhard Krötz

Journal:
Trans. Amer. Math. Soc. **354** (2002), 3299-3327

MSC (2000):
Primary 22E46

DOI:
https://doi.org/10.1090/S0002-9947-02-03012-X

Published electronically:
April 3, 2002

MathSciNet review:
1897401

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we define a distinguished boundary for the complex crowns of non-compact Riemannian symmetric spaces . The basic result is that affine symmetric spaces of can appear as a component of this boundary if and only if they are non-compactly causal symmetric spaces.

**[1]**D. N. Akhiezer, and S. G. Gindikin,*On Stein extensions of real symmetric spaces*, Math. Ann.**286**(1990), 1-12. MR**91a:32047****[2]**L. Barchini,*Stein Extensions of Real Symmetric Spaces and the Geometry of the Flag Manifold*, Math. Ann., to appear.**[3]**D. Burns, S. Halverscheid, and R. Hind,*The Geometry of Grauert Tubes and Complexification of Symmetric Spaces*, preprint.**[4]**J. Faraut, and A. Koranyi,*Analysis on symmetric cones*, Oxford University Press, Oxford, 1994. MR**98g:17031****[5]**L. Geatti,*Invariant domains in the complexifiaction of a non-compcat Riemannian symmetric space*, J. Algebra, to appear.**[6]**S. Gindikin,*Tube domains in Stein symmetric spaces*, Positivity in Lie theory: open problems, de Gruyter, Berlin, 1998, pp. 81-97. MR**99i:32041****[7]**S. Gindikin, and B. Krötz,*Invariant Stein domains in Stein symmetric spaces and a non-linear complex convexity theorem*, IMRN**18**(2002), 959-971.**[8]**S. Gindikin, B. Krötz, and G. Ólafsson,*Hardy spaces for non-compactly causal symmetric spaces and the most continuous spectrum*, MSRI preprint 2001-043.**[9]**S. Gindikin, and T. Matsuki,*Stein Extensions of Riemann Symmetric Spaces and Dualities of Orbits on Flag Manifolds*, MSRI preprint 2001-028.**[10]**S. Helgason,*Differential Geometry, Lie groups, and symmetric spaces*, Academic Press, 1978. MR**80k:53081****[11]**J. Hilgert, and G. Ólafsson,*Causal Symmetric Spaces, Geometry and Harmonic Analysis*, Academic Press, 1996. MR**97m:43006****[12]**A. W. Knapp,*Lie Groups Beyond an Introduction*, Birkhäuser, 1996. MR**98b:22002****[13]**B. Krötz, and K.-H. Neeb,*On Hyperbolic Cones and Mixed Symmetric Spaces*, J. Lie Theory**6**(1996), 69-146. MR**97k:17007****[14]**B. Krötz, and R. J. Stanton,*Holomorphic extensions of representations: (I) automorphic functions*, preprint.**[15]**B. Krötz, and R. J. Stanton,*Holomorphic extensions of representations: (II) geometry and harmonic analysis*, preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
22E46

Retrieve articles in all journals with MSC (2000): 22E46

Additional Information

**Simon Gindikin**

Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Email:
gindikin@math.rutgers.edu

**Bernhard Krötz**

Affiliation:
The Ohio State University, Department of Mathematics, 231 West 18th Avenue, Columbus, Ohio 43210-1174

Email:
kroetz@math.ohio-state.edu

DOI:
https://doi.org/10.1090/S0002-9947-02-03012-X

Keywords:
Riemannian symmetric spaces,
non-compactly causal symmetric spaces

Received by editor(s):
November 2, 2001

Published electronically:
April 3, 2002

Additional Notes:
The first author was supported in part by NSF-grant DMS-0097314 and the MSRI

The second author was supported in part by NSF-grant DMS-0070816 and the MSRI

Article copyright:
© Copyright 2002
American Mathematical Society