Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Braid pictures for Artin groups


Author: Daniel Allcock
Journal: Trans. Amer. Math. Soc. 354 (2002), 3455-3474
MSC (2000): Primary 20F36
DOI: https://doi.org/10.1090/S0002-9947-02-02944-6
Published electronically: April 30, 2002
MathSciNet review: 1911508
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define the braid groups of a two-dimensional orbifold and introduce conventions for drawing braid pictures. We use these to realize the Artin groups associated to the spherical Coxeter diagrams $A_n$, $B_n=C_n$ and $D_n$ and the affine diagrams $\tilde{A}_n$, $\tilde{B}_n$, $\tilde{C}_n$ and $\tilde{D}_n$ as subgroups of the braid groups of various simple orbifolds. The cases $D_n$, $\tilde{B}_n$, $\tilde{C}_n$ and $\tilde{D}_n$ are new. In each case the Artin group is a normal subgroup with abelian quotient; in all cases except $\tilde{A}_n$ the quotient is finite. We also illustrate the value of our braid calculus by giving a picture-proof of the basic properties of the Garside element of an Artin group of type $D_n$.


References [Enhancements On Off] (What's this?)

  • 1. E. Brieskorn. Singular elements of semi-simple algebraic groups. In Proc. International Congress of Mathematicians, Nice 1970, vol. 2, pages 270-289. MR 55:10720
  • 2. E. Brieskorn. Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math., 12:57-61, 1971. MR 45:2692
  • 3. E. Brieskorn. Sur les groupes de tresses [d'apres V. I. Arnol$'$d]. In Seminaire Bourbaki, Exp. no. 401, number 317 in Lecture Notes in Math., pages 21-44. Springer, 1973. MR 54:10660
  • 4. E. Brieskorn and K. Saito. Artin-Gruppen und Coxeter-Gruppen. Invent. Math., 17:245-271, 1972. MR 48:2263
  • 5. R. Charney. Artin groups of finite type are biautomatic. Math. Ann., 292:671-683, 1992. MR 93c:20067
  • 6. R. Charney and M. Davis. Finite ${K}(\pi,1)$'s for Artin groups. In F. Quinn, editor, Prospects in Topology, volume 138 of Annals of Math. Studies, pages 110-124. Princeton University Press, 1995. MR 97a:57001
  • 7. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. ATLAS of Finite Groups. Oxford, 1985. MR 88g:20025
  • 8. P. Deligne. Les immeubles des groupes de tresses généralisés. Invent. Math., 17:273-302, 1972. MR 54:10659
  • 9. D. B. A. Epstein, J. W. Cannon, S. V. F. Levy, M. S. Paterson, and W. P. Thurston. Word Processing in Groups. Jones and Bartlett, Boston, 1992. MR 93i:20036
  • 10. R. H. Fox and L. Neuwirth. The braid groups. Math. Scand., 10:110-126, 1962. MR 27:742
  • 11. S. Lambropoulou. A study of braids in 3-manifolds. Ph.D. thesis, Warwick University, 1993.
  • 12. S. Lambropoulou. Solid torus links and Hecke algebras of $\mathcal{B}$-type. In D. N. Yetter, editor, Proceedings of the Conference on Quantum Topology, pages 225-245. World Scientific, 1994. MR 96a:57020
  • 13. S. Lambropoulou. Knot theory related to generalized and cyclotomic Hecke algebras of $\mathcal{B}$-type. J. Knot Thory and its Ramifications, 8(5):621-658, 1999. MR 2000k:57011
  • 14. J. M. Montesinos. Classical Tessellations and Three-manifolds. Springer-Verlag, 1987. MR 89d:57016
  • 15. Nguyêñ Viêt Dung. The fundamental groups of the spaces of regular orbits of the affine Weyl groups. Topology, 22:425-435, 1983.MR 85f:57001
  • 16. M. Salvetti. The homotopy type of Artin groups. Math. Res. Lett., 1:565-577, 1994. MR 95j:52026
  • 17. P. Scott. The Geometries of 3-Manifolds. Bull. London Math. Soc., 15:401-487, 1983. MR 84m:57009
  • 18. W. P. Thurston. The Geometry and Topology of Three-Manifolds. Lecture notes, Princeton University 1980. Available electronically at http://www.msri.org/publications/books/gt3m. (cf. MR 87m:57016)
  • 19. T. tom Dieck. Symmetrische Brücken und Knotentheorie zu den Dynkin-Diagrammen von Typ ${B}$. J. Reine Angew. Math., 451:71-88, 1994. MR 95h:57006
  • 20. T. tom Dieck. Categories of rooted cyliner ribbons and their representations. J. Reine Angew. Math., 494:35-63, 1998. MR 99h:18010
  • 21. H. van der Lek. Extended Artin groups. In Singularities, part 2, volume 40 of Proc. Sympos. Pure Math., pages 117-121. American Mathematical Society, Providence, RI, 1983. MR 85b:14005
  • 22. H. van der Lek. The Homotopy Type of Complex Hyperplane Arrangements. Ph.D. thesis, Katholieke Universiteit te Nijmegen, 1983.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20F36

Retrieve articles in all journals with MSC (2000): 20F36


Additional Information

Daniel Allcock
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Address at time of publication: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
Email: allcock@math.harvard.edu

DOI: https://doi.org/10.1090/S0002-9947-02-02944-6
Keywords: Braid group, Artin group, orbifold, Garside element
Received by editor(s): July 29, 2000
Received by editor(s) in revised form: September 10, 2001
Published electronically: April 30, 2002
Additional Notes: Supported by an NSF postdoctoral fellowship.
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society