Diffusive logistic equation with constant yield harvesting, I: Steady States

Authors:
Shobha Oruganti, Junping Shi and Ratnasingham Shivaji

Journal:
Trans. Amer. Math. Soc. **354** (2002), 3601-3619

MSC (2000):
Primary 35J65; Secondary 35J25, 35B32, 92D25

Published electronically:
May 7, 2002

MathSciNet review:
1911513

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a reaction-diffusion equation which models the constant yield harvesting to a spatially heterogeneous population which satisfies a logistic growth. We prove the existence, uniqueness and stability of the maximal steady state solutions under certain conditions, and we also classify all steady state solutions under more restricted conditions. Exact global bifurcation diagrams are obtained in the latter case. Our method is a combination of comparison arguments and bifurcation theory.

**[AB]**G. A. Afrouzi and K. J. Brown,*On a diffusive logistic equation*, J. Math. Anal. Appl.**225**(1998), no. 1, 326–339. MR**1639260**, 10.1006/jmaa.1998.6044**[ACS]**Ismael Ali, Alfonso Castro, and R. Shivaji,*Uniqueness and stability of nonnegative solutions for semipositone problems in a ball*, Proc. Amer. Math. Soc.**117**(1993), no. 3, 775–782. MR**1116249**, 10.1090/S0002-9939-1993-1116249-5**[ABC]**Antonio Ambrosetti, Haïm Brezis, and Giovanna Cerami,*Combined effects of concave and convex nonlinearities in some elliptic problems*, J. Funct. Anal.**122**(1994), no. 2, 519–543. MR**1276168**, 10.1006/jfan.1994.1078**[BC]**Brauer, Fred; Castillo-Chávez, Carlos,*Mathematical models in population biology and epidemiology*.*Texts in Applied Mathematics*,**40**. Springer-Verlag, New York, (2001). CMP**1 822 695****[BK]**Haïm Brezis and Shoshana Kamin,*Sublinear elliptic equations in 𝑅ⁿ*, Manuscripta Math.**74**(1992), no. 1, 87–106. MR**1141779**, 10.1007/BF02567660**[CMS]**Castro, Alfonso; Maya, C.; Shivaji, R.,*Nonlinear eigenvalue problems with semipositone structure*.*Elec. Jour. Differential Equations*,**Conf. 5.**, (2000), 33-49. CMP**1 799 043****[CS]**Alfonso Castro and R. Shivaji,*Positive solutions for a concave semipositone Dirichlet problem*, Nonlinear Anal.**31**(1998), no. 1-2, 91–98. MR**1487532**, 10.1016/S0362-546X(96)00189-7**[CC1]**Robert Stephen Cantrell and Chris Cosner,*Diffusive logistic equations with indefinite weights: population models in disrupted environments*, Proc. Roy. Soc. Edinburgh Sect. A**112**(1989), no. 3-4, 293–318. MR**1014659**, 10.1017/S030821050001876X**[CC2]**R. S. Cantrell and C. Cosner,*The effects of spatial heterogeneity in population dynamics*, J. Math. Biol.**29**(1991), no. 4, 315–338. MR**1105497**, 10.1007/BF00167155**[Cl]**Colin W. Clark,*Mathematical bioeconomics*, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1990. The optimal management of renewable resources; With a contribution by Gordon Munro; A Wiley-Interscience Publication. MR**1044994****[CP]**Ph. Clément and L. A. Peletier,*An anti-maximum principle for second-order elliptic operators*, J. Differential Equations**34**(1979), no. 2, 218–229. MR**550042**, 10.1016/0022-0396(79)90006-8**[CR1]**Michael G. Crandall and Paul H. Rabinowitz,*Bifurcation from simple eigenvalues*, J. Functional Analysis**8**(1971), 321–340. MR**0288640****[CR2]**Michael G. Crandall and Paul H. Rabinowitz,*Bifurcation, perturbation of simple eigenvalues and linearized stability*, Arch. Rational Mech. Anal.**52**(1973), 161–180. MR**0341212****[F]**Fisher, R.A.,*The wave of advance of advantageous genes*.*Ann. Eugenics*,**7**, (1937), 353-369.**[He]**Daniel Henry,*Geometric theory of semilinear parabolic equations*, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR**610244****[Ho]**Holling, C.S.,*The components of predation as revealed by a study of small-mammal predation on the European pine sawfly*.*Canadian Entomologist*,**91**, (1959), 294-320.**[KPP]**Kolmogoroff, A., Petrovsky, I, Piscounoff, N,*Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem*. (French)*Moscow Univ. Bull. Math.***1**, (1937), 1-25.**[KS]**Korman, Philip; Shi, Junping,*New exact multiplicity results with an application to a population model*,*Proceedings of Royal Society of Edinburgh Sect. A*,**131**, (2001), 1167-1182. CMP**1 862 448****[M]**J. D. Murray,*Mathematical biology*, 2nd ed., Biomathematics, vol. 19, Springer-Verlag, Berlin, 1993. MR**1239892****[OS]**Tiancheng Ouyang and Junping Shi,*Exact multiplicity of positive solutions for a class of semilinear problem. II*, J. Differential Equations**158**(1999), no. 1, 94–151. MR**1721723**, 10.1016/S0022-0396(99)80020-5**[Sa]**D. H. Sattinger,*Monotone methods in nonlinear elliptic and parabolic boundary value problems*, Indiana Univ. Math. J.**21**(1971/72), 979–1000. MR**0299921****[S]**Junping Shi,*Persistence and bifurcation of degenerate solutions*, J. Funct. Anal.**169**(1999), no. 2, 494–531. MR**1730558**, 10.1006/jfan.1999.3483**[SS]**Shi, Junping; Shivaji, Ratnasingham,*Global bifurcation for concave semipositon problems*, Recent Advances in Evolution Equations, (2002). (to appear)**[SY]**Junping Shi and Miaoxin Yao,*On a singular nonlinear semilinear elliptic problem*, Proc. Roy. Soc. Edinburgh Sect. A**128**(1998), no. 6, 1389–1401. MR**1663988**, 10.1017/S0308210500027384**[Y]**Kôsaku Yosida,*Functional analysis*, 5th ed., Springer-Verlag, Berlin-New York, 1978. Grundlehren der Mathematischen Wissenschaften, Band 123. MR**0500055**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
35J65,
35J25,
35B32,
92D25

Retrieve articles in all journals with MSC (2000): 35J65, 35J25, 35B32, 92D25

Additional Information

**Shobha Oruganti**

Affiliation:
Department of Mathematics, Mississippi State University, Mississippi State, Mississippi 39762

Email:
so1@ra.msstate.edu

**Junping Shi**

Affiliation:
Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187 and Department of Mathematics, Harbin Normal University, Harbin, Heilongjiang, P. R. China 150080

Email:
shij@math.wm.edu

**Ratnasingham Shivaji**

Affiliation:
Department of Mathematics, Mississippi State University, Mississippi State, Mississippi 39762

Email:
shivaji@ra.msstate.edu

DOI:
https://doi.org/10.1090/S0002-9947-02-03005-2

Keywords:
Diffusive logistic equation,
harvesting,
steady states,
comparison methods,
bifurcation

Received by editor(s):
September 5, 2001

Received by editor(s) in revised form:
October 15, 2001

Published electronically:
May 7, 2002

Article copyright:
© Copyright 2002
American Mathematical Society