Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A note on Meyers' Theorem in $W^{k,1}$


Authors: Irene Fonseca, Giovanni Leoni, Jan Malý and Roberto Paroni
Journal: Trans. Amer. Math. Soc. 354 (2002), 3723-3741
MSC (2000): Primary 49J45, 49Q20
DOI: https://doi.org/10.1090/S0002-9947-02-03027-1
Published electronically: April 30, 2002
MathSciNet review: 1911518
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Lower semicontinuity properties of multiple integrals

\begin{displaymath}u\in W^{k,1}(\Omega;\mathbb{R}^{d})\mapsto\int_{\Omega}f(x,u(x), \cdots,\nabla^{k}u(x))\,dx\end{displaymath}

are studied when $f$ may grow linearly with respect to the highest-order derivative, $\nabla^{k}u,$ and admissible $W^{k,1}(\Omega;\mathbb{R}^{d})$ sequences converge strongly in $W^{k-1,1}(\Omega;\mathbb{R}^{d}).$ It is shown that under certain continuity assumptions on $f,$ convexity, $1$-quasiconvexity or $k$-polyconvexity of

\begin{displaymath}\xi\mapsto f(x_{0},u(x_{0}),\cdots,\nabla^{k-1}u(x_{0}),\xi)\end{displaymath}

ensures lower semicontinuity. The case where $f(x_{0},u(x_{0}),\cdots,\nabla^{k-1}u(x_{0}),\cdot)$ is $k$-quasiconvex remains open except in some very particular cases, such as when $f(x,u(x),\cdots,\nabla^{k}u(x))=h(x)g(\nabla^{k}u(x)).$


References [Enhancements On Off] (What's this?)

  • 1. S. AGMON, A. DOUGLIS AND L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Applied Math. 12 (1959), 623-727. MR 23:A2610
  • 2. M. AMAR AND V. DE CICCO, Relaxation of quasi-convex integrals of arbitrary order, Proc. Roy. Soc. Edinburgh 124 (1994), 927-946. MR 95h:49015
  • 3. L. AMBROSIO, New lower semicontinuity results for integral functionals, Rend. Accad. Naz. Sci. XL, 11 (1987) 1-42. MR 89c:49010
  • 4. L. AMBROSIO AND G. DAL MASO, On the relaxation in $BV(\Omega;\mathbb{R}^{m})$ of quasi-convex integrals, J. Funct. Anal., 109 (1992) 76-97. MR 93j:49012
  • 5. L. AMBROSIO, N. FUSCO AND D. PALLARA, Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs, Oxford University Press, 2000.
  • 6. J. BALL, J. CURRIE AND P. OLVER, Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal. 41 (1981), 315-328. MR 83f:49031
  • 7. L. BOCCARDO, D. GIACHETTI, J.I. DIAZ AND F. MURAT, Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Diff. Equations 106 (1993), 215-237. MR 94k:35062
  • 8. A. BRAIDES, I. FONSECA AND G. LEONI, A-quasiconvexity: relaxation and homogenization, ESAIM:COCV 5 (2000), 539-577. MR 2001k:49034
  • 9. M. CARRIERO, A. LEACI AND F. TOMARELLI, Special bounded hessian and elastic-plastic plate, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 16 (1992), 223-258. MR 94k:49043
  • 10. M. CARRIERO, A. LEACI AND F. TOMARELLI, Strong minimizers of Blake & Zisserman functional, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 257-285. MR 2000a:49019
  • 11. M. CARRIERO, A. LEACI AND F. TOMARELLI, A second order model in image segmentation: Blake & Zisserman functional, Progr. Nonlinear Differential Equations Appl., 25, Birkhäuser 25 (1996), 57-72. MR 97h:4901b
  • 12. R. CERNÝ AND J. MALÝ, Counterexample to lower semicontinuity in Calculus of Variations, to appear in Math. Z.
  • 13. B. DACOROGNA, Direct methods in the calculus of variations, Springer-Verlag, New York, 1989. MR 90e:49001
  • 14. G. DAL MASO AND C. SBORDONE, Weak lower semicontinuity of polyconvex integrals: a borderline case, Math. Z. 218 (1995), 603-609. MR 96g:49003
  • 15. E. DE GIORGI AND L. AMBROSIO, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), 199-210. MR 92j:49043
  • 16. L.C. EVANS AND R.F. GARIEPY, Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, 1992. MR 93f:28001
  • 17. I. FONSECA AND G. LEONI, On lower semicontinuity and relaxation, Proc. Royal Soc. Edinburgh 131 (2001), 519-565.
  • 18. I. FONSECA AND G. LEONI, Some remarks on lower semicontinuity, Indiana U. Math. J. 49 (2000), 617-635.
  • 19. I. FONSECA AND S. MÜLLER, Quasi-convex integrands and lower semicontinuity in $L^{1}$, SIAM J. Math. Anal. 23 (1992), 1081-1098. MR 93i:49020
  • 20. I. FONSECA AND S. MÜLLER, Relaxation of quasiconvex functionals in $\mathrm{BV}(\Omega,\mathbb{R}^{p})$ for integrands $f(x,u,\nabla u)$, Arch. Rat. Mech. Anal. 123 (1993), 1-49. MR 94h:49023
  • 21. FONSECA I. AND S. MÜLLER, $\mathcal{A}$-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal., 30 (1999) 1355-1390. MR 2000j:49020
  • 22. N. FUSCO, Quasiconvessità e semicontinuità per integrali multipli di ordine superiore, Ricerche Mat. 29 (1980), 307-323. MR 83h:49022
  • 23. N. FUSCO AND J. E. HUTCHINSON, A direct proof for lower semicontinuity of polyconvex functionals, Manuscripta Math. 85 (1995), 35-50. MR 96f:49020
  • 24. M. GUIDORZI AND L. POGGIOLINI, Lower semicontinuity for quasiconvex integrals of higher-order, Nonlinear Differential Equations Appl. 6 (1999), 227-246. MR 2000c:49021
  • 25. P. MARCELLINI, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals quasiconvex integrals, Manuscripta Math. 51 (1985), 1-28. MR 86h:49018
  • 26. N. MEYERS, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc. 119 (1965), 125-149. MR 32:6270
  • 27. C. MORREY, Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25-53. MR 14:992a
  • 28. J. SERRIN, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc. 161 (1961), 139-167. MR 25:1466
  • 29. W.P. ZIEMER, Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Springer-Verlag, New York, 1989. MR 91e:46046

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 49J45, 49Q20

Retrieve articles in all journals with MSC (2000): 49J45, 49Q20


Additional Information

Irene Fonseca
Affiliation: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Email: fonseca@cmu.edu

Giovanni Leoni
Affiliation: Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, Alessandria, Italy 15100
Email: leoni@unipmn.it

Jan Malý
Affiliation: Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83,186 75 Praha 8, Czech Republic
Email: maly@karlin.mff.cuni.cz

Roberto Paroni
Affiliation: Dipartimento di Ingegneria Civile, Università degli Studi di Udine, Udine, Italy 33100
Email: roberto.paroni@dic.uniud.it

DOI: https://doi.org/10.1090/S0002-9947-02-03027-1
Keywords: $k$-quasiconvexity, higher-order lower semicontinuity, gradient truncation
Received by editor(s): April 1, 2001
Published electronically: April 30, 2002
Additional Notes: The research of I. Fonseca was partially supported by the National Science Foundation under Grant No. DMS–9731957.
The research of G. Leoni was partially supported by MURST, Project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”, by the Italian CNR, through the strategic project “Metodi e modelli per la Matematica e l’Ingegneria”, and by GNAFA
The research of J. Malý was supported by CEZ MSM 113200007, grants GAČR 201/00/0768 and GAUK 170/99.
The authors wish to thank Guy Bouchitté for stimulating discussions on the subject of this work, and the Center for Nonlinear Analysis (NSF Grant No. DMS–9803791) for its support during the preparation of this paper.
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society