On the finite-dimensional dynamical systems with limited competition

Authors:
Xing Liang and Jifa Jiang

Journal:
Trans. Amer. Math. Soc. **354** (2002), 3535-3554

MSC (2000):
Primary 34D23, 47H07; Secondary 92B05

Published electronically:
April 30, 2002

MathSciNet review:
1911510

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The asymptotic behavior of dynamical systems with limited competition is investigated. We study index theory for fixed points, permanence, global stability, convergence everywhere and coexistence. It is shown that the system has a globally asymptotically stable fixed point if every fixed point is hyperbolic and locally asymptotically stable relative to the face it belongs to. A nice result is the necessary and sufficient conditions for the system to have a globally asymptotically stable positive fixed point. It can be used to establish the sufficient conditions for the system to persist uniformly and the convergence result for all orbits. Applications are made to time-periodic ordinary differential equations and reaction-diffusion equations.

**1.**Peter Hess and Alan C. Lazer,*On an abstract competition model and applications*, Nonlinear Anal.**16**(1991), no. 11, 917–940. MR**1106994**, 10.1016/0362-546X(91)90097-K**2.**S. B. Hsu, H. L. Smith, and Paul Waltman,*Competitive exclusion and coexistence for competitive systems on ordered Banach spaces*, Trans. Amer. Math. Soc.**348**(1996), no. 10, 4083–4094. MR**1373638**, 10.1090/S0002-9947-96-01724-2**3.**Sze-Bi Hsu, Paul Waltman, and Sean F. Ellermeyer,*A remark on the global asymptotic stability of a dynamical system modeling two species competition*, Hiroshima Math. J.**24**(1994), no. 2, 435–445. MR**1284385****4.**H. L. Smith and H. R. Thieme,*Stable coexistence and bi-stability for competitive systems on ordered Banach spaces*, J. Diff. Equations 176(2001), 195-222. CMP**1 861 187****5.**Yasuhiro Takeuchi, Norihiko Adachi, and Hidekatsu Tokumaru,*Global stability of ecosystems of the generalized Volterra type*, Math. Biosci.**42**(1978), no. 1-2, 119–136. MR**529099**, 10.1016/0025-5564(78)90010-X**6.**C. C. Travis and Wilfred M. Post III,*Dynamics and comparative statics of mutualistic communities*, J. Theoret. Biol.**78**(1979), no. 4, 553–571. MR**538415**, 10.1016/0022-5193(79)90190-5**7.**Hal L. Smith,*Competing subcommunities of mutualists and a generalized Kamke theorem*, SIAM J. Appl. Math.**46**(1986), no. 5, 856–874. MR**858998**, 10.1137/0146052**8.**Hal L. Smith,*Systems of ordinary differential equations which generate an order preserving flow. A survey of results*, SIAM Rev.**30**(1988), no. 1, 87–113. MR**931279**, 10.1137/1030003**9.**Morris W. Hirsch,*Systems of differential equations which are competitive or cooperative. I. Limit sets*, SIAM J. Math. Anal.**13**(1982), no. 2, 167–179. MR**647119**, 10.1137/0513013**10.**Morris W. Hirsch,*Systems of differential equations that are competitive or cooperative. II. Convergence almost everywhere*, SIAM J. Math. Anal.**16**(1985), no. 3, 423–439. MR**783970**, 10.1137/0516030**11.**Morris W. Hirsch,*Stability and convergence in strongly monotone dynamical systems*, J. Reine Angew. Math.**383**(1988), 1–53. MR**921986**, 10.1515/crll.1988.383.1**12.**H. I. Freedman and Paul Waltman,*Persistence in models of three interacting predator-prey populations*, Math. Biosci.**68**(1984), no. 2, 213–231. MR**738903**, 10.1016/0025-5564(84)90032-4**13.**Geoffrey Butler and Paul Waltman,*Persistence in dynamical systems*, J. Differential Equations**63**(1986), no. 2, 255–263. MR**848269**, 10.1016/0022-0396(86)90049-5**14.**Geoffrey Butler, H. I. Freedman, and Paul Waltman,*Uniformly persistent systems*, Proc. Amer. Math. Soc.**96**(1986), no. 3, 425–430. MR**822433**, 10.1090/S0002-9939-1986-0822433-4**15.**Yasuhiro Takeuchi and Norihiko Adachi,*The existence of globally stable equilibria of ecosystems of the generalized Volterra type*, J. Math. Biol.**10**(1980), no. 4, 401–415. MR**602257**, 10.1007/BF00276098**16.**Caifeng Tu and Jifa Jiang,*Global stability and permanence for a class of type 𝐾 monotone systems*, SIAM J. Math. Anal.**30**(1999), no. 2, 360–378. MR**1664764**, 10.1137/S0036141097325290**17.**Caifeng Tu and Jifa Jiang,*The necessary and sufficient conditions for the global stability of type-𝐾 Lotka-Volterra system*, Proc. Amer. Math. Soc.**127**(1999), no. 11, 3181–3186. MR**1628420**, 10.1090/S0002-9939-99-05077-7**18.**I. Terescák,*Dynamics of smooth strongly monotone discrete-time dynamical systems*, preprint.**19.**Yuan Lou and Wei-Ming Ni,*Diffusion, self-diffusion and cross-diffusion*, J. Differential Equations**131**(1996), no. 1, 79–131. MR**1415047**, 10.1006/jdeq.1996.0157**20.**Peter N. Brown,*Decay to uniform states in ecological interactions*, SIAM J. Appl. Math.**38**(1980), no. 1, 22–37. MR**559078**, 10.1137/0138002**21.**P. de Mottoni,*Qualitative analysis for some quasilinear parabolic systems*, Inst. Math. Pol. Acad. Sci., zam., 11/79 190(1979).**22.**E. N. Dancer and P. Hess,*Stability of fixed points for order-preserving discrete-time dynamical systems*, J. Reine Angew. Math.**419**(1991), 125–139. MR**1116922****23.**Ji Fa Jiang,*On the global stability of cooperative systems*, Bull. London Math. Soc.**26**(1994), no. 5, 455–458. MR**1308362**, 10.1112/blms/26.5.455**24.**Herbert Amann,*Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces*, SIAM Rev.**18**(1976), no. 4, 620–709. MR**0415432****25.**Hal L. Smith,*On the asymptotic behavior of a class of deterministic models of cooperating species*, SIAM J. Appl. Math.**46**(1986), no. 3, 368–375. MR**841454**, 10.1137/0146025**26.**B. S. Goh,*Stability in models of mutualism*, Amer. Natur.**113**(1979), no. 2, 261–275. MR**596837**, 10.1086/283384**27.**Hal L. Smith,*Monotone dynamical systems*, Mathematical Surveys and Monographs, vol. 41, American Mathematical Society, Providence, RI, 1995. An introduction to the theory of competitive and cooperative systems. MR**1319817****28.**E. D. Conway and J. A. Smoller,*A comparison technique for systems of reaction-diffusion equations*, Comm. Partial Differential Equations**2**(1977), no. 7, 679–697. MR**0445091****29.**Peter Takáč,*Convergence to equilibrium on invariant 𝑑-hypersurfaces for strongly increasing discrete-time semigroups*, J. Math. Anal. Appl.**148**(1990), no. 1, 223–244. MR**1052057**, 10.1016/0022-247X(90)90040-M

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
34D23,
47H07,
92B05

Retrieve articles in all journals with MSC (2000): 34D23, 47H07, 92B05

Additional Information

**Xing Liang**

Affiliation:
Department of Mathematics University of Science and Technology of China Hefei, Anhui 230026, P. R. China

Email:
xliang@mail.ustc.edu.cn

**Jifa Jiang**

Affiliation:
Department of Mathematics University of Science and Technology of China Hefei, Anhui 230026, P. R. China

Email:
jiangjf@ustc.edu.cn

DOI:
https://doi.org/10.1090/S0002-9947-02-03032-5

Keywords:
Map with limited competition,
index of fixed points,
global stability,
permanence,
coexistence

Received by editor(s):
May 25, 2001

Published electronically:
April 30, 2002

Additional Notes:
Research supported by the National Natural Science Foundation of China

Article copyright:
© Copyright 2002
American Mathematical Society