Euler characters and submanifolds of constant positive curvature

Author:
John Douglas Moore

Journal:
Trans. Amer. Math. Soc. **354** (2002), 3815-3834

MSC (2000):
Primary 53C40; Secondary 57R20

DOI:
https://doi.org/10.1090/S0002-9947-02-03043-X

Published electronically:
May 7, 2002

MathSciNet review:
1911523

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article develops methods for studying the topology of submanifolds of constant positive curvature in Euclidean space. It proves that if is an -dimensional compact connected Riemannian submanifold of constant positive curvature in , then must be simply connected. It also gives a conformal version of this theorem.

**1.**I. Amemiya and K. Masuda,*On Joristheorem on differentiability of functions*, Kodai Math. J.**12**(1989), 92-97. MR**90a:26005****2.**J. Boman,*Differentiability of a function and of its compositions with functions of one variable*, Math. Scand.**20**(1967), 249-268. MR**38:6009****3.**J. Cheeger and J. Simons,*Differential characters and geometric invariants*, Springer Lecture Notes**1167**(1985), 50-80. MR**87g:53059****4.**S. S. Chern,*A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds*, Annals of Math.**45**(1944), 747-752. MR**6:106a****5.**S. S. Chern and N. Kuiper,*Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space*, Annals of Math.**56**(1952), 422-430. MR**14:408e****6.**S. S. Chern and J. Simons,*Characteristic forms and geometric invariants*, Annals of Math.**99**(1974), 48-69. MR**50:5811****7.**H. Federer,*Geometric measure theory*, Springer, New York, 1969. MR**41:1976****8.**S. Kobayashi and K. Nomizu,*Foundations of differential geometry*(two volumes), John Wiley and Sons, New York, 1963 and 1969. MR**27:2945**; MR**38:6501****9.**J. Millson,*Examples of nonvanishing Chern-Simons invariants*, J. Differential Geometry**10**(1975), 589-600. MR**52:15494****10.**J. D. Moore,*Conformally flat submanifolds of Euclidean space*, Math. Ann.**225**(1977), 89-97. MR**55:4048****11.**J. D. Moore,*Submanifolds of constant positive curvature I*, Duke Math. J.**44**(1977), 449-484. MR**55:11174****12.**J. D. Moore,*Codimension two submanifolds of positive curvature*, Proc. Amer. Math. Soc.**70**(1978), 72-74. MR**80a:53063****13.**J. D. Moore,*On conformal immersions of space forms*, Springer Lecture Notes**838**(1981), 203-210. MR**82k:53081****14.**J. D. Moore,*On extendability of isometric immersions of spheres*, Duke Math. J.**85**(1996), 685-699. MR**97i:53074****15.**M. S. Narasimhan and S. Ramanan,*Existence of universal connections*, Amer. J. Math.**83**(1961), 563-672. MR**24:A3597****16.**B. O'Neill,*Umbilics of constant curvature immersions*, Duke Math. J.**32**(1965), 89-97. MR**31:5181**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53C40,
57R20

Retrieve articles in all journals with MSC (2000): 53C40, 57R20

Additional Information

**John Douglas Moore**

Affiliation:
Department of Mathematics, University of California, Santa Barbara, CA 93106

Email:
moore@math.ucsb.edu

DOI:
https://doi.org/10.1090/S0002-9947-02-03043-X

Received by editor(s):
March 28, 2001

Published electronically:
May 7, 2002

Article copyright:
© Copyright 2002
American Mathematical Society