Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Amenability and exactness for dynamical systems and their $C^{*}$-algebras

Author: Claire Anantharaman-Delaroche
Journal: Trans. Amer. Math. Soc. 354 (2002), 4153-4178
MSC (2000): Primary 46L05, 46L55
Published electronically: June 4, 2002
MathSciNet review: 1926869
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the relations between amenability (resp. amenability at infinity) of $C^{*}$-dynamical systems and equality or nuclearity (resp. exactness) of the corresponding crossed products.

References [Enhancements On Off] (What's this?)

  • [Ad] S. Adams: Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology, 33 (1994), 765-783. MR 96g:58104
  • [AD1] C. Anantharaman-Delaroche: Systèmes dynamiques non commutatifs et moyennabilité, Math. Ann., 279 (1987), 297-315. MR 89f:46127
  • [AD2] C. Anantharaman-Delaroche: Amenable correspondences and approximation properties for von Neumann algebras, Pacific J. Math., 171 (1995), 309-341. MR 96m:46106
  • [ADR] C. Anantharaman-Delaroche and J. Renault: Amenable groupoids, Monographie de L'Enseignement Mathématique 36, Genève, 2000. MR 2001m:22005
  • [Co] A. Connes: Classification of injective factors, Ann. of Math., 104 (1976), 73-115. MR 56:12908
  • [Di] J. Dixmier: Les $C^{*}$-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. MR 30:1404
  • [Ef] E. G. Effros: Property $\Gamma $ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486. MR 50:8100
  • [Ex] R. Exel: Amenability for Fell bundles, J. Reine Angew. Math., 492 (1997), 41-73. MR 99a:46131
  • [EN] R. Exel, C. K. Ng: Approximation property of $C^{*}$-algebraic bundles, Preprint 1999.
  • [Fu] H. Furstenberg: Boundary theory and stochastic processes in homogeneous spaces, in Harmonic analysis on homogeneous spaces, Proc. Sympos. Pure and Appl. Math. 26 (1973), 193-229. MR 50:4815
  • [Gre] F. P. Greenleaf: Invariants means on topological groups, Van Nostrand, New York, 1969. MR 40:4776
  • [Gro] M. Gromov: Spaces and questions, Geom. Funct. Anal. 2000, 118-161. MR 2002e:53056
  • [GK] E. Guentner and J. Kaminker: Exactness and the Novikov conjecture, Topology, 41 (2002), 411-418.
  • [Gui] A. Guichardet: Tensor products of $C^{*}$-algebras, Aarhus University Lecture Notes Series No. 12, 1969.
  • [HK] U. Haagerup and J. Kraus: Approximation properties for group $C^{*}$-algebras and group von Neumann algebras, Trans. Amer. Math. Soc., 344 (1994), 667-699. MR 94k:22008
  • [Hi] N. Higson: Bivariant $K$-theory and the Novikov conjecture, Geom. Funct. Anal., 10 (2000), 563-581. MR 2001k:19009
  • [HR] N. Higson and J. Roe: Amenable group actions and the Novikov conjecture, J. Reine Angew. Math., 519 (2000), 143-153. MR 2001h:57043
  • [Ki] E. Kirchberg: On non-semisplit extensions, tensor products and exactness of group $C^{*}$-algebras, Invent. Math., 112 (1993), 449-489. MR 94d:46058
  • [KW] E. Kirchberg and S. Wassermann: Exact groups and continuous bundles of $C^{*}$-algebras, Math. Ann., 315 (1999), 169-203. MR 2000i:46050
  • [La1] E. C. Lance: On nuclear $C^{*}$-algebras, J. Functional Analysis, 12 (1973), 157-176. MR 49:9640
  • [La2] E. C. Lance: Hilbert $C^{*}$-modules. A toolkit for operator algebraists, London Math. Soc. Lecture Note Series 210, Cambridge Univ. Press, 1995. MR 96k:46100
  • [LP] A. T. M. Lau and A. L. T. Paterson: Inner amenable locally compact groups, Trans. Amer. Math. Soc., 325 (1991), 155-169. MR 91h:43002
  • [LR] V. Losert and H. Rindler: Conjugate invariant means, Colloq. Math., 15 (1987), 221-225. MR 89d:43001
  • [MZ] D. Montgomery and L. Zippin: Topological transformation groups, Interscience Publishers, 1955. MR 17:383b
  • [Oz] N. Ozawa: Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 691-695. MR 2001g:22007
  • [Pa1] A. L. T. Paterson: Amenability, Mathematical Surveys and Monographs No. 29, Amer. Math. Soc., Providence, RI, 1988. MR 90e:43001
  • [Pa2] A. L. T. Paterson: The class of locally compact groups $G$ for which $C^{*}(G)$ is amenable, in Harmonic analysis (Luxembourg, 1987), Lectures Notes in Math., 1359 (1988), Springer, 226-237. MR 90m:22019
  • [Pe] G. K. Pedersen: $C^{*}$-algebras and their automorphism groups, Academic Press, 1979. MR 81e:46037
  • [Re] J. Renault: A groupoid approach to $C^{*}$-algebras, Lecture Notes in Math., 793 Springer, Berlin, 1980. MR 82h:46075
  • [Ri] M. A. Rieffel: Integrable and proper actions on $C^{*}$-algebras, and square-integrable representations of groups, Preprint 1999.
  • [SS] A. M. Sinclair and R. R. Smith: The completely bounded approximation property for discrete crossed products, Indiana Univ. Math. J., 46 (1997), 1311-1322. MR 99e:46072
  • [STY] G. Skandalis, J.-L. Tu and G. Yu: Coarse Baum-Connes conjecture and groupoids, Preprint 1999.
  • [Wa] S. Wassermann: Exact $C^{*}$-algebras and related topics, Lecture Notes Series 19, Global Analysis Research Center, Seoul National University, 1994. MR 95b:46081
  • [Yu] G. Yu: The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., 139 (2000), 201-240. MR 2000j:19005

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46L05, 46L55

Retrieve articles in all journals with MSC (2000): 46L05, 46L55

Additional Information

Claire Anantharaman-Delaroche
Affiliation: Département de Mathématiques, Université d’Orléans, B. P. 6759, F-45067 Orléans Cedex 2, France

Keywords: Amenability, Exactness, Nuclearity, $C^{*}$-dynamical systems, Crossed products
Received by editor(s): March 19, 2001
Published electronically: June 4, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society