Character degrees and nilpotence class of finite -groups: An approach via pro- groups

Authors:
A. Jaikin-Zapirain and Alexander Moretó

Journal:
Trans. Amer. Math. Soc. **354** (2002), 3907-3925

MSC (2000):
Primary 20C15; Secondary 20E18

Published electronically:
April 12, 2002

MathSciNet review:
1926859

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite set of powers of containing 1. It is known that for some choices of , if is a finite -group whose set of character degrees is , then the nilpotence class of is bounded by some integer that depends on , while for some other choices of such an integer does not exist. The sets of the first type are called class bounding sets. The problem of determining the class bounding sets has been studied in several papers whose results made it tempting to conjecture that a set is class bounding if and only if . In this article we provide a new approach to this problem. Our main result shows the relevance of certain -adic space groups in this problem. With its help, we are able to prove some results that provide new class bounding sets. We also show that there exist non-class-bounding sets such that .

**1.**J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal,*Analytic pro-𝑝 groups*, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR**1720368****2.**Robert M. Guralnick,*On the number of generators of a finite group*, Arch. Math. (Basel)**53**(1989), no. 6, 521–523. MR**1023965**, 10.1007/BF01199809**3.**B. Huppert,*Endliche Gruppen. I*, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR**0224703****4.**Bertram Huppert,*A remark on the character-degrees of some 𝑝-groups*, Arch. Math. (Basel)**59**(1992), no. 4, 313–318. MR**1179454**, 10.1007/BF01197044**5.**I. M. Isaacs,*Sets of 𝑝-powers as irreducible character degrees*, Proc. Amer. Math. Soc.**96**(1986), no. 4, 551–552. MR**826479**, 10.1090/S0002-9939-1986-0826479-1**6.**I. M. ISAACS, ``Character Theory of Finite Groups", Dover, New York, 1994. MR**57:417 (original ed.)****7.**I. M. Isaacs,*Characters of groups associated with finite algebras*, J. Algebra**177**(1995), no. 3, 708–730. MR**1358482**, 10.1006/jabr.1995.1325**8.**I. M. Isaacs and Greg Knutson,*Irreducible character degrees and normal subgroups*, J. Algebra**199**(1998), no. 1, 302–326. MR**1489366**, 10.1006/jabr.1997.7191**9.**I. M. Isaacs and Alexander Moretó,*The character degrees and nilpotence class of a 𝑝-group*, J. Algebra**238**(2001), no. 2, 827–842. MR**1823786**, 10.1006/jabr.2000.8651**10.**I. M. Isaacs and D. S. Passman,*A characterization of groups in terms of the degrees of their characters. II*, Pacific J. Math.**24**(1968), 467–510. MR**0241524****11.**I. M. ISAACS, M. C. SLATTERY,*Character degree sets that do not bound the class of a -group*, to appear in Proc. Amer. Math. Soc.**12.**Thomas Michael Keller,*Orbit sizes and character degrees*, Pacific J. Math.**187**(1999), no. 2, 317–332. MR**1675033**, 10.2140/pjm.1999.187.317**13.**G. Klaas, C. R. Leedham-Green, and W. Plesken,*Linear pro-𝑝-groups of finite width*, Lecture Notes in Mathematics, vol. 1674, Springer-Verlag, Berlin, 1997. MR**1483894****14.**L. G. Kovács,*On finite soluble groups*, Math. Z.**103**(1968), 37–39. MR**0223458****15.**C. R. Leedham-Green, S. McKay, and W. Plesken,*Space groups and groups of prime-power order. V. A bound to the dimension of space groups with fixed coclass*, Proc. London Math. Soc. (3)**52**(1986), no. 1, 73–94. MR**812446**, 10.1112/plms/s3-52.1.73**16.**C. R. Leedham-Green and M. F. Newman,*Space groups and groups of prime-power order. I*, Arch. Math. (Basel)**35**(1980), no. 3, 193–202. MR**583590**, 10.1007/BF01235338**17.**Andrea Lucchini,*A bound on the number of generators of a finite group*, Arch. Math. (Basel)**53**(1989), no. 4, 313–317. MR**1015993**, 10.1007/BF01195209**18.**Avinoam Mann,*Generators of 2-groups*, Israel J. Math.**10**(1971), 158–159. MR**0296160****19.**Avinoam Mann,*Minimal characters of 𝑝-groups*, J. Group Theory**2**(1999), no. 3, 225–250. MR**1696312**, 10.1515/jgth.1999.016**20.**Andrea Previtali,*Orbit lengths and character degrees in 𝑝-Sylow subgroups of some classical Lie groups*, J. Algebra**177**(1995), no. 3, 658–675. MR**1358479**, 10.1006/jabr.1995.1322**21.**J. M. RIEDL,*Fitting heights of solvable groups with few character degrees*, J. Algebra**233**(2000), 287-308. CMP**1 793 598****22.**Michael C. Slattery,*Character degrees and nilpotence class in 𝑝-groups*, J. Austral. Math. Soc. Ser. A**57**(1994), no. 1, 76–80. MR**1279287****23.**John S. Wilson,*Profinite groups*, London Mathematical Society Monographs. New Series, vol. 19, The Clarendon Press, Oxford University Press, New York, 1998. MR**1691054**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20C15,
20E18

Retrieve articles in all journals with MSC (2000): 20C15, 20E18

Additional Information

**A. Jaikin-Zapirain**

Affiliation:
Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco Ciudad Universitaria, 28049 Madrid, Spain

Email:
ajaikin@uam.es

**Alexander Moretó**

Affiliation:
Departamento de Matemáticas, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain

Email:
mtbmoqua@lg.ehu.es

DOI:
https://doi.org/10.1090/S0002-9947-02-02992-6

Received by editor(s):
July 18, 2001

Received by editor(s) in revised form:
December 17, 2001

Published electronically:
April 12, 2002

Additional Notes:
Research of the first author partially supported by DGICYT. Research of the second author supported by the Basque Government and the University of the Basque Country.

Article copyright:
© Copyright 2002
American Mathematical Society