Character degrees and nilpotence class of finite groups: An approach via pro groups
Authors:
A. JaikinZapirain and Alexander Moretó
Journal:
Trans. Amer. Math. Soc. 354 (2002), 39073925
MSC (2000):
Primary 20C15; Secondary 20E18
Published electronically:
April 12, 2002
MathSciNet review:
1926859
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a finite set of powers of containing 1. It is known that for some choices of , if is a finite group whose set of character degrees is , then the nilpotence class of is bounded by some integer that depends on , while for some other choices of such an integer does not exist. The sets of the first type are called class bounding sets. The problem of determining the class bounding sets has been studied in several papers whose results made it tempting to conjecture that a set is class bounding if and only if . In this article we provide a new approach to this problem. Our main result shows the relevance of certain adic space groups in this problem. With its help, we are able to prove some results that provide new class bounding sets. We also show that there exist nonclassbounding sets such that .
 1.
J.
D. Dixon, M.
P. F. du Sautoy, A.
Mann, and D.
Segal, Analytic pro𝑝 groups, 2nd ed., Cambridge
Studies in Advanced Mathematics, vol. 61, Cambridge University Press,
Cambridge, 1999. MR 1720368
(2000m:20039)
 2.
Robert
M. Guralnick, On the number of generators of a finite group,
Arch. Math. (Basel) 53 (1989), no. 6, 521–523.
MR
1023965 (90m:20027), http://dx.doi.org/10.1007/BF01199809
 3.
B.
Huppert, Endliche Gruppen. I, Die Grundlehren der
Mathematischen Wissenschaften, Band 134, SpringerVerlag, BerlinNew York,
1967 (German). MR 0224703
(37 #302)
 4.
Bertram
Huppert, A remark on the characterdegrees of some
𝑝groups, Arch. Math. (Basel) 59 (1992),
no. 4, 313–318. MR 1179454
(93g:20016), http://dx.doi.org/10.1007/BF01197044
 5.
I.
M. Isaacs, Sets of 𝑝powers as
irreducible character degrees, Proc. Amer.
Math. Soc. 96 (1986), no. 4, 551–552. MR 826479
(87d:20013), http://dx.doi.org/10.1090/S00029939198608264791
 6.
I. M. ISAACS, ``Character Theory of Finite Groups", Dover, New York, 1994. MR 57:417 (original ed.)
 7.
I.
M. Isaacs, Characters of groups associated with finite
algebras, J. Algebra 177 (1995), no. 3,
708–730. MR 1358482
(96k:20011), http://dx.doi.org/10.1006/jabr.1995.1325
 8.
I.
M. Isaacs and Greg
Knutson, Irreducible character degrees and normal subgroups,
J. Algebra 199 (1998), no. 1, 302–326. MR 1489366
(98m:20013), http://dx.doi.org/10.1006/jabr.1997.7191
 9.
I.
M. Isaacs and Alexander
Moretó, The character degrees and nilpotence class of a
𝑝group, J. Algebra 238 (2001), no. 2,
827–842. MR 1823786
(2002a:20008), http://dx.doi.org/10.1006/jabr.2000.8651
 10.
I.
M. Isaacs and D.
S. Passman, A characterization of groups in terms of the degrees of
their characters. II, Pacific J. Math. 24 (1968),
467–510. MR 0241524
(39 #2864)
 11.
I. M. ISAACS, M. C. SLATTERY, Character degree sets that do not bound the class of a group, to appear in Proc. Amer. Math. Soc.
 12.
Thomas
Michael Keller, Orbit sizes and character degrees, Pacific J.
Math. 187 (1999), no. 2, 317–332. MR 1675033
(99m:20013), http://dx.doi.org/10.2140/pjm.1999.187.317
 13.
G.
Klaas, C.
R. LeedhamGreen, and W.
Plesken, Linear pro𝑝groups of finite width, Lecture
Notes in Mathematics, vol. 1674, SpringerVerlag, Berlin, 1997. MR 1483894
(98m:20028)
 14.
L.
G. Kovács, On finite soluble groups, Math. Z.
103 (1968), 37–39. MR 0223458
(36 #6506)
 15.
C.
R. LeedhamGreen, S.
McKay, and W.
Plesken, Space groups and groups of primepower order. V. A bound
to the dimension of space groups with fixed coclass, Proc. London
Math. Soc. (3) 52 (1986), no. 1, 73–94. MR 812446
(87g:20036), http://dx.doi.org/10.1112/plms/s352.1.73
 16.
C.
R. LeedhamGreen and M.
F. Newman, Space groups and groups of primepower order. I,
Arch. Math. (Basel) 35 (1980), no. 3, 193–202.
MR 583590
(81m:20029), http://dx.doi.org/10.1007/BF01235338
 17.
Andrea
Lucchini, A bound on the number of generators of a finite
group, Arch. Math. (Basel) 53 (1989), no. 4,
313–317. MR 1015993
(90m:20026), http://dx.doi.org/10.1007/BF01195209
 18.
Avinoam
Mann, Generators of 2groups, Israel J. Math.
10 (1971), 158–159. MR 0296160
(45 #5221)
 19.
Avinoam
Mann, Minimal characters of 𝑝groups, J. Group Theory
2 (1999), no. 3, 225–250. MR 1696312
(2000f:20007), http://dx.doi.org/10.1515/jgth.1999.016
 20.
Andrea
Previtali, Orbit lengths and character degrees in 𝑝Sylow
subgroups of some classical Lie groups, J. Algebra
177 (1995), no. 3, 658–675. MR 1358479
(96m:20013), http://dx.doi.org/10.1006/jabr.1995.1322
 21.
J. M. RIEDL, Fitting heights of solvable groups with few character degrees, J. Algebra 233 (2000), 287308. CMP 1 793 598
 22.
Michael
C. Slattery, Character degrees and nilpotence class in
𝑝groups, J. Austral. Math. Soc. Ser. A 57
(1994), no. 1, 76–80. MR 1279287
(95d:20013)
 23.
John
S. Wilson, Profinite groups, London Mathematical Society
Monographs. New Series, vol. 19, The Clarendon Press, Oxford
University Press, New York, 1998. MR 1691054
(2000j:20048)
 1.
 J. D. DIXON, M. P. F. DU SAUTOY, A. MANN, D. SEGAL, ``Analytic Pro Groups", Second edition. Cambridge Studies in Advanced Mathematics, 61. Cambridge University Press, Cambridge, 1999. MR 2000m:20039
 2.
 R. M. GURALNICK, On the number of generators of a finite group, Arch. Math. 53 (1989), 521523. MR 90m:20027
 3.
 B. HUPPERT, ``Endliche Gruppen", SpringerVerlag, BerlinNew York, 1967. MR 37:302
 4.
 B. HUPPERT, A remark on the characterdegrees of some groups, Arch. Math. 59 (1992), 313318. MR 93g:20016
 5.
 I. M. ISAACS, Sets of powers as irreducible character degrees, Proc. Amer. Math. Soc. 96 (1986), 551552. MR 87d:20013
 6.
 I. M. ISAACS, ``Character Theory of Finite Groups", Dover, New York, 1994. MR 57:417 (original ed.)
 7.
 I. M. ISAACS, Characters of groups associated with finite algebras, J. Algebra 177 (1995), 708730. MR 96k:20011
 8.
 I. M. ISAACS, G. KNUTSON, Irreducible character degrees and normal subgroups, J. Algebra 199 (1998), 302326. MR 98m:20013
 9.
 I. M. ISAACS, A. MORETÓ, The character degrees and nilpotence class of a group, J. Algebra 238 (2001), 827842. MR 2002a:20008
 10.
 I. M. ISAACS, D. S. PASSMAN, A characterization of groups in terms of the degrees of their characters II, Pacific J. Math. 24 (1968), 467510. MR 39:2864
 11.
 I. M. ISAACS, M. C. SLATTERY, Character degree sets that do not bound the class of a group, to appear in Proc. Amer. Math. Soc.
 12.
 T. M. KELLER, Orbit sizes and character degrees, Pacific J. Math. 187 (1999), 317332. MR 99m:20013
 13.
 G. KLAAS, C. R. LEEDHAMGREEN, W. PLESKEN, ``Linear ProGroups of Finite Width", Lecture Notes in Mathematics 1674, SpringerVerlag, Berlin, 1997. MR 98m:20028
 14.
 L. KOVACS, On finite soluble groups, Math. Z. 103 (1968), 3739. MR 36:6506
 15.
 C. R. LEEDHAMGREEN, S. MCKAY, W. PLESKEN, Space groups and groups of primepower order. V. A bound to the dimension of space groups with fixed coclass, Proc. London Math. Soc. (3) 52 (1986), 7394. MR 87g:20036
 16.
 C. R. LEEDHAMGREEN, M. F. NEWMAN, Space groups and groups of primepower order. I., Arch. Math. 35 (1980), 193202. MR 81m:20029
 17.
 A. LUCCHINI, A bound on the number of generators of a finite group, Arch. Math. 53 (1989), 313317. MR 90m:20026
 18.
 A. MANN, Generators of groups, Israel J. Math. 10 (1971), 158159. MR 45:5221
 19.
 A. MANN, Minimal characters of groups, J. Group Theory 2 (1999), 225250. MR 2000f:20007
 20.
 A. PREVITALI, Orbit lengths and character degrees in Sylow subgroups of some classical Lie groups, J. Algebra 177 (1995), 658675. MR 96m:20013
 21.
 J. M. RIEDL, Fitting heights of solvable groups with few character degrees, J. Algebra 233 (2000), 287308. CMP 1 793 598
 22.
 M. C. SLATTERY, Character degrees and nilpotence class in groups, J. Austral Math. Soc. (Series A) 57 (1994), 7680. MR 95d:20013
 23.
 J. S. WILSON, ``Profinite Groups", London Math. Soc. Monographs, New Series, 19, The Clarendon Press, Oxford University Press, 1998. MR 2000j:20048
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
20C15,
20E18
Retrieve articles in all journals
with MSC (2000):
20C15,
20E18
Additional Information
A. JaikinZapirain
Affiliation:
Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco Ciudad Universitaria, 28049 Madrid, Spain
Email:
ajaikin@uam.es
Alexander Moretó
Affiliation:
Departamento de Matemáticas, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
Email:
mtbmoqua@lg.ehu.es
DOI:
http://dx.doi.org/10.1090/S0002994702029926
PII:
S 00029947(02)029926
Received by editor(s):
July 18, 2001
Received by editor(s) in revised form:
December 17, 2001
Published electronically:
April 12, 2002
Additional Notes:
Research of the first author partially supported by DGICYT. Research of the second author supported by the Basque Government and the University of the Basque Country.
Article copyright:
© Copyright 2002
American Mathematical Society
