Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Harmonic morphisms with one-dimensional fibres on Einstein manifolds


Authors: Radu Pantilie and John C. Wood
Journal: Trans. Amer. Math. Soc. 354 (2002), 4229-4243
MSC (2000): Primary 58E20; Secondary 53C43
Published electronically: May 22, 2002
MathSciNet review: 1926872
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that, from an Einstein manifold of dimension greater than or equal to five, there are just two types of harmonic morphism with one-dimensional fibres. This generalizes a result of R.L. Bryant who obtained the same conclusion under the assumption that the domain has constant curvature.


References [Enhancements On Off] (What's this?)

  • 1. Paul Baird, Harmonic maps with symmetry, harmonic morphisms and deformations of metrics, Research Notes in Mathematics, vol. 87, Pitman (Advanced Publishing Program), Boston, MA, 1983. MR 716320 (85i:58038)
  • 2. Paul Baird, Harmonic morphisms and circle actions on 3- and 4-manifolds, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 1, 177–212 (English, with French summary). MR 1056781 (91e:57025)
  • 3. P. Baird and J. Eells, A conservation law for harmonic maps, Geometry Symposium, Utrecht 1980 (Utrecht, 1980) Lecture Notes in Math., vol. 894, Springer, Berlin-New York, 1981, pp. 1–25. MR 655417 (83i:58031)
  • 4. P. Baird and J. C. Wood, Harmonic morphisms, Seifert fibre spaces and conformal foliations, Proc. London Math. Soc. (3) 64 (1992), no. 1, 170–196. MR 1132859 (93c:58051), http://dx.doi.org/10.1112/plms/s3-64.1.170
  • 5. P. Baird, J.C. Wood, Harmonic morphisms between Riemannian manifolds, London Math. Soc. Monogr. (N.S.), Oxford Univ. Press (to appear).
  • 6. Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684 (88f:53087)
  • 7. Robert L. Bryant, Harmonic morphisms with fibers of dimension one, Comm. Anal. Geom. 8 (2000), no. 2, 219–265. MR 1753318 (2001i:53101)
  • 8. James Eells and Luc Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, vol. 50, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. MR 703510 (85g:58030)
  • 9. Bent Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 2, vi, 107–144 (English, with French summary). MR 499588 (80h:58023)
  • 10. M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, New York-Heidelberg, 1973. Graduate Texts in Mathematics, Vol. 14. MR 0341518 (49 #6269)
  • 11. S. Gudmundsson, The Geometry of Harmonic Morphisms, Ph.D. Thesis, University of Leeds, 1992.
  • 12. S. Gudmundsson, The Bibliography of Harmonic Morphisms, http://www.maths.lth.se/ matematiklu/personal/sigma/harmonic/bibliography.html
  • 13. Sigmundur Gudmundsson and John C. Wood, Harmonic morphisms between almost Hermitian manifolds, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 185–197 (English, with Italian summary). MR 1456260 (98i:58069)
  • 14. Tôru Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), no. 2, 215–229. MR 545705 (80k:58045)
  • 15. Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. MR 0152974 (27 #2945)
    Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225 (38 #6501)
  • 16. André Lichnerowicz, Applications harmoniques et variétés kähleriennes, Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69) Academic Press, London, 1968/1969, pp. 341–402 (French). MR 0262993 (41 #7598)
  • 17. E. Loubeau, X. Mo, Pseudo horizontally weakly conformal maps from Riemannian manifolds into Kähler manifolds, preprint, University of Brest, 2000.
  • 18. Xiaohuan Mo, Horizontally conformal maps and harmonic morphisms, Chinese J. Contemp. Math. 17 (1996), no. 3, 245–252. MR 1432505 (97m:58055)
  • 19. Radu Pantilie, Harmonic morphisms with one-dimensional fibres, Internat. J. Math. 10 (1999), no. 4, 457–501. MR 1697618 (2000d:53100), http://dx.doi.org/10.1142/S0129167X99000197
  • 20. R. Pantilie, Submersive harmonic maps and morphisms, Ph.D. Thesis, University of Leeds, 2000.
  • 21. R. Pantilie, Harmonic morphisms with 1-dimensional fibres on 4-dimensional Einstein manifolds, Comm. Anal. Geom., (to appear).
  • 22. Radu Pantilie and John C. Wood, New results on harmonic morphisms with one-dimensional fibres, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 43(91) (2000), no. 3-4, 355–365. MR 1837488 (2002b:53107)
  • 23. R. Pantilie, J.C. Wood, Topological restrictions for circle actions and harmonic morphisms, preprint, University of Leeds, 2000.
  • 24. R. Pantilie, J.C. Wood, A new construction of Einstein self-dual metrics, Asian J. Math. (to appear).
  • 25. Bruce L. Reinhart, Differential geometry of foliations, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 99, Springer-Verlag, Berlin, 1983. The fundamental integrability problem. MR 705126 (85i:53038)
  • 26. Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258 (12,522b)
  • 27. J. C. Wood, Harmonic morphisms, foliations and Gauss maps, Complex differential geometry and nonlinear differential equations (Brunswick, Maine, 1984) Contemp. Math., vol. 49, Amer. Math. Soc., Providence, RI, 1986, pp. 145–184. MR 833811 (87i:58045), http://dx.doi.org/10.1090/conm/049/833811

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 58E20, 53C43

Retrieve articles in all journals with MSC (2000): 58E20, 53C43


Additional Information

Radu Pantilie
Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, England
Email: r.pantilie@leeds.ac.uk

John C. Wood
Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, England
Email: j.c.wood@leeds.ac.uk\,.

DOI: http://dx.doi.org/10.1090/S0002-9947-02-03044-1
PII: S 0002-9947(02)03044-1
Keywords: Harmonic morphism, foliation, Einstein manifold
Received by editor(s): December 17, 2001
Published electronically: May 22, 2002
Additional Notes: The authors gratefully acknowledge that this work was done under E.P.S.R.C. grant number GR/N27897.
Article copyright: © Copyright 2002 American Mathematical Society