Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Generalized pseudo-Riemannian geometry
HTML articles powered by AMS MathViewer

by Michael Kunzinger and Roland Steinbauer PDF
Trans. Amer. Math. Soc. 354 (2002), 4179-4199 Request permission

Abstract:

Generalized tensor analysis in the sense of Colombeau’s construction is employed to introduce a nonlinear distributional pseudo-Riemannian geometry. In particular, after deriving several characterizations of invertibility in the algebra of generalized functions, we define the notions of generalized pseudo-Riemannian metric, generalized connection and generalized curvature tensor. We prove a “Fundamental Lemma of (pseudo-) Riemannian geometry” in this setting and define the notion of geodesics of a generalized metric. Finally, we present applications of the resulting theory to general relativity.
References
  • Aragona, J., Juriaans, S. O. Some structural properties of the topological ring of Colombeau’s generalized numbers. Comm. Algebra, 29 (5), 2201–2230, 2001.
  • Herbert Balasin, Distributional energy-momentum tensor of the extended Kerr geometry, Classical Quantum Gravity 14 (1997), no. 12, 3353–3362. MR 1492277, DOI 10.1088/0264-9381/14/12/018
  • Herbert Balasin, Distributional aspects of general relativity: the example of the energy-momentum tensor of the extended Kerr-geometry, Nonlinear theory of generalized functions (Vienna, 1997) Chapman & Hall/CRC Res. Notes Math., vol. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 231–239. MR 1699839
  • Rajendra Bhatia, Perturbation bounds for matrix eigenvalues, Pitman Research Notes in Mathematics Series, vol. 162, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. MR 925418
  • Nicolas Bourbaki, Elements of mathematics. Algebra, Part I: Chapters 1-3, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1974. Translated from the French. MR 0354207
  • C. J. S. Clarke, J. A. Vickers, and J. P. Wilson, Generalized functions and distributional curvature of cosmic strings, Classical Quantum Gravity 13 (1996), no. 9, 2485–2498. MR 1410817, DOI 10.1088/0264-9381/13/9/013
  • Jean-François Colombeau, New generalized functions and multiplication of distributions, North-Holland Mathematics Studies, vol. 84, North-Holland Publishing Co., Amsterdam, 1984. Notas de Matemática [Mathematical Notes], 90. MR 738781
  • Jean-François Colombeau, Elementary introduction to new generalized functions, North-Holland Mathematics Studies, vol. 113, North-Holland Publishing Co., Amsterdam, 1985. Notes on Pure Mathematics, 103. MR 808961
  • Dapić, N., Kunzinger, M., Pilipović, S. Symmetry group analysis of weak solutions. Proc. London Math. Soc., 84(3):686–710, 2002.
  • J. W. de Roever and M. Damsma, Colombeau algebras on a $C^\infty$-manifold, Indag. Math. (N.S.) 2 (1991), no. 3, 341–358. MR 1149687, DOI 10.1016/0019-3577(91)90022-Y
  • Robert Geroch and Jennie Traschen, Strings and other distributional sources in general relativity, Phys. Rev. D (3) 36 (1987), no. 4, 1017–1031. MR 904839, DOI 10.1103/PhysRevD.36.1017
  • Grosser, M., Farkas, E., Kunzinger, M., Steinbauer, R. On the foundations of nonlinear generalized functions I, II. Mem. Amer. Math. Soc. 153, 2001.
  • Grosser, M., Kunzinger, M., Steinbauer, R., Vickers, J. A global theory of algebras of generalized functions. Adv. Math., 166(1):50–72, 2002.
  • Heinzle, J. M., Steinbauer, R. Remarks on the distributional Schwarzschild geometry. J. Math. Phys., 43(3):1493–1508, 2002.
  • Israel, W. Singular hypersurfaces and thin shells in general relativity. Nuovo Cim., 44B(1):1–14, 1966.
  • Kamleh, W. Signature changing space-times and the new generalised functions. Preprint, gr-qc/0004057, 2000.
  • Sergiu Klainerman and Francesco Nicolò, On local and global aspects of the Cauchy problem in general relativity, Classical Quantum Gravity 16 (1999), no. 8, R73–R157. MR 1709123, DOI 10.1088/0264-9381/16/8/201
  • Klainerman, S., Rodnianski, I. Rough solutions of the Einstein-vacuum equations. Preprint, math.AP/0109173, 2001.
  • Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs, vol. 53, American Mathematical Society, Providence, RI, 1997. MR 1471480, DOI 10.1090/surv/053
  • Kunzinger, M. Generalized functions valued in a smooth manifold. Monatsh. Math., to appear (available electronically at http://arxiv.org/abs/math.FA/ 0107051), 2002.
  • Michael Kunzinger and Michael Oberguggenberger, Group analysis of differential equations and generalized functions, SIAM J. Math. Anal. 31 (2000), no. 6, 1192–1213. MR 1766563, DOI 10.1137/S003614109833450X
  • M. Kunzinger and R. Steinbauer, A rigorous solution concept for geodesic and geodesic deviation equations in impulsive gravitational waves, J. Math. Phys. 40 (1999), no. 3, 1479–1489. MR 1674610, DOI 10.1063/1.532816
  • Michael Kunzinger and Roland Steinbauer, A note on the Penrose junction conditions, Classical Quantum Gravity 16 (1999), no. 4, 1255–1264. MR 1696153, DOI 10.1088/0264-9381/16/4/013
  • Kunzinger, M., Steinbauer, R. Foundations of a nonlinear distributional geometry. Acta Appl. Math., 71, 179–206, 2002.
  • Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
  • Anastasios Mallios and Elemér E. Rosinger, Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology, Acta Appl. Math. 55 (1999), no. 3, 231–250. MR 1686596, DOI 10.1023/A:1006106718337
  • Anastasios Mallios and Elemer E. Rosinger, Space-time foam dense singularities and de Rham cohomology, Acta Appl. Math. 67 (2001), no. 1, 59–89. MR 1847884, DOI 10.1023/A:1010663502915
  • J. Ligęza and M. Tvrdý, On systems of linear algebraic equations in the Colombeau algebra, Math. Bohem. 124 (1999), no. 1, 1–14. MR 1687437, DOI 10.21136/MB.1999.125977
  • Reza Mansouri and Kourosh Nozari, A new distributional approach to signature change, Gen. Relativity Gravitation 32 (2000), no. 2, 253–269. MR 1746204, DOI 10.1023/A:1001991609020
  • J. E. Marsden, Generalized Hamiltonian mechanics: A mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics, Arch. Rational Mech. Anal. 28 (1967/68), 323–361. MR 224935, DOI 10.1007/BF00251661
  • M. Oberguggenberger, Multiplication of distributions and applications to partial differential equations, Pitman Research Notes in Mathematics Series, vol. 259, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. MR 1187755
  • M. Oberguggenberger and M. Kunzinger, Characterization of Colombeau generalized functions by their pointvalues, Math. Nachr. 203 (1999), 147–157. MR 1698646, DOI 10.1002/mana.1999.3212030110
  • Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
  • Phillip E. Parker, Distributional geometry, J. Math. Phys. 20 (1979), no. 7, 1423–1426. MR 538717, DOI 10.1063/1.524224
  • Roger Penrose and Wolfgang Rindler, Spinors and space-time. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984. Two-spinor calculus and relativistic fields. MR 776784, DOI 10.1017/CBO9780511564048
  • Alan D. Rendall, Local and global existence theorems for the Einstein equations, Living Rev. Relativ. 3 (2000), 2000-1, 36. MR 1736020, DOI 10.12942/lrr-2000-1
  • S. R. Simanca, Pseudo-differential operators, Pitman Research Notes in Mathematics Series, vol. 236, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1990. MR 1075017
  • R. Steinbauer, The ultrarelativistic Reissner-Nordstrøm field in the Colombeau algebra, J. Math. Phys. 38 (1997), no. 3, 1614–1622. MR 1435686, DOI 10.1063/1.531819
  • R. Steinbauer, Geodesics and geodesic deviation for impulsive gravitational waves, J. Math. Phys. 39 (1998), no. 4, 2201–2212. MR 1614790, DOI 10.1063/1.532283
  • James A. Vickers, Nonlinear generalised functions in general relativity, Nonlinear theory of generalized functions (Vienna, 1997) Chapman & Hall/CRC Res. Notes Math., vol. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 275–290. MR 1699855
  • Vickers, J., Wilson, J. A nonlinear theory of tensor distributions. ESI-Preprint (available electronically at http://www.esi.ac.at/ESI-Preprints.html), 566, 1998.
  • J. A. Vickers and J. P. Wilson, Invariance of the distributional curvature of the cone under smooth diffeomorphisms, Classical Quantum Gravity 16 (1999), no. 2, 579–588. MR 1672476, DOI 10.1088/0264-9381/16/2/019
  • J. P. Wilson, Distributional curvature of time dependent cosmic strings, Classical Quantum Gravity 14 (1997), no. 12, 3337–3351. MR 1492276, DOI 10.1088/0264-9381/14/12/017
Similar Articles
Additional Information
  • Michael Kunzinger
  • Affiliation: Department of Mathematics, University of Vienna, Strudlhofg. 4, A-1090 Wien, Austria
  • Email: Michael.Kunzinger@univie.ac.at
  • Roland Steinbauer
  • Affiliation: Department of Mathematics, University of Vienna, Strudlhofg. 4, A-1090 Wien, Austria
  • Email: roland.steinbauer@univie.ac.at
  • Received by editor(s): August 9, 2001
  • Received by editor(s) in revised form: January 31, 2002
  • Published electronically: June 3, 2002
  • Additional Notes: This work was in part supported by research grant P12023-MAT of the Austrian Science Fund
  • © Copyright 2002 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 354 (2002), 4179-4199
  • MSC (2000): Primary 46F30; Secondary 46T30, 46F10, 83C05
  • DOI: https://doi.org/10.1090/S0002-9947-02-03058-1
  • MathSciNet review: 1926870