Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Emergence of the Witt group in the cellular lattice of rational spaces


Authors: Kathryn Hess and Paul-Eugène Parent
Journal: Trans. Amer. Math. Soc. 354 (2002), 4571-4583
MSC (2000): Primary 11E04, 55P60, 55P62
DOI: https://doi.org/10.1090/S0002-9947-02-03049-0
Published electronically: July 2, 2002
MathSciNet review: 1926889
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an embedding of a quotient of the Witt semigroup into the lattice of rational cellular classes represented by formal $2$-cones between $S^{2n}$ and the two-cell complex $X_n=S^{2n}\cup_{[\iota,\iota]}e^{4n}$ ($n\geq1$).


References [Enhancements On Off] (What's this?)

  • 1. J.F. Adams, P.J. Hilton, On the chain algebra of a loop space, Comment. Math. Helvetici 30, (1956), pp. 305-330. MR 17:1119b
  • 2. D.J. Anick, Hopf algebras up to homotopy, J. Amer. Math. Soc. 2, (1989), pp. 417-453. MR 90c:16007
  • 3. A.K. Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7, No.4 (1994), pp. 831-874. MR 95c:55010
  • 4. A.K. Bousfield, D.M. Kan, Homotopy Limits, Completions, and Localizations, Springer Lecture Notes in Math. 304, (1972). MR 51:1825
  • 5. W. Chachólski, Closed classes, Proc. Conf. on Algebraic Topology, Barcelona (1994), Progress in Math. Vol. 136, Birkhäuser (1996), pp. 95-118. MR 97e:55007
  • 6. W. Chachólski, P.-E. Parent, and D. Stanley, $A$-acyclic spaces versus $A$-cellular spaces, preprint.
  • 7. W. Chachólski, P.-E. Parent, and D. Stanley, Cellular generators, Proc. Amer. Math. Soc., To appear.
  • 8. E. D. Farjoun, Cellular Spaces, Null Spaces and Homotopy Localization, Lecture Notes in Mathematics 1622 (1996). MR 98f:55010
  • 9. Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics 205, Springer-Verlag, (2001). MR 2002d:55014
  • 10. S. Halperin, J.-M. Lemaire, Suites inertes dans les algèbres de Lie graduées, Math. Scand. 61, (1987), pp. 39-67. MR 89e:55022
  • 11. K. Hess, The rational homotopy algebra and cellular type, preprint.
  • 12. M.J. Hopkins, J.H. Smith, Nilpotence and stable homotopy theory II, Ann. of Math. 148, (1998), pp. 1-49. MR 99h:55009
  • 13. D.W. Lewis, J.-P. Tignol, Classification theorems for central simple algebras with involution, Manuscripta Math. 100, (1999), pp. 259-276. MR 2000m:16027
  • 14. A. Pfister, Quadratic forms with applications to algebraic geometry and topology, London Math. Soc., Lecture Note Series 217, Cambridge University Press, (1995). MR 97c:11046
  • 15. D. Quillen, Rational homotopy theory, Annals of Math. (2) 90, (1969), pp. 205-295. MR 41:2678
  • 16. W. Scharlau, Quadratic and hermitian forms, A series of comprehensive studies in mathematics 270, Springer-Verlag, (1985). MR 86k:11022
  • 17. D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), pp. 269-331. MR 58:31119
  • 18. D. Tanré, Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Lecture Notes in Math. 1025, Springer-Verlag, (1983). MR 86b:55010

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11E04, 55P60, 55P62

Retrieve articles in all journals with MSC (2000): 11E04, 55P60, 55P62


Additional Information

Kathryn Hess
Affiliation: Chaire d’Algèbre, Département de Mathématiques, Ecole Polytechnique Fédérale, 1015 Lausanne, Suisse
Email: kathryn.hess@epfl.ch

Paul-Eugène Parent
Affiliation: Chaire d’Algèbre, Département de Mathématiques, Ecole Polytechnique Fédérale, 1015 Lausanne, Suisse
Email: paul-eugene.parent@epfl.ch

DOI: https://doi.org/10.1090/S0002-9947-02-03049-0
Keywords: Cellular space, quadratic form, Witt group, Quillen model
Received by editor(s): November 6, 2001
Received by editor(s) in revised form: March 19, 2002
Published electronically: July 2, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society