Hilbert transforms and maximal functions along variable flat curves

Author:
Jonathan M. Bennett

Journal:
Trans. Amer. Math. Soc. **354** (2002), 4871-4892

MSC (2000):
Primary 44A12, 42B20

Published electronically:
July 16, 2002

MathSciNet review:
1926840

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study certain Hilbert transforms and maximal functions along variable flat curves in the plane. We obtain their boundedness by considering the oscillatory singular integrals which arise from an application of a partial Fourier transform.

**1.**J. M. Bennett,*Some oscillatory singular integrals with variable flat phases, and related operators*, Ph.D. thesis, Edinburgh University (1998).**2.**Anthony Carbery, Michael Christ, James Vance, Stephen Wainger, and David K. Watson,*Operators associated to flat plane curves: 𝐿^{𝑝} estimates via dilation methods*, Duke Math. J.**59**(1989), no. 3, 675–700. MR**1046743**, 10.1215/S0012-7094-89-05930-9**3.**Anthony Carbery and Sonsoles Pérez,*Maximal functions and Hilbert transforms along variable flat curves*, Math. Res. Lett.**6**(1999), no. 2, 237–249. MR**1689214**, 10.4310/MRL.1999.v6.n2.a12**4.**Anthony Carbery, Stephen Wainger, and James Wright,*Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group*, J. Amer. Math. Soc.**8**(1995), no. 1, 141–179. MR**1273412**, 10.1090/S0894-0347-1995-1273412-0**5.**A. Carbery, S. Wainger, and J. Wright,*Hilbert transforms and maximal functions along variable flat plane curves*, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), 1995, pp. 119–139. MR**1364881****6.**Hasse Carlsson, Michael Christ, Antonio Córdoba, Javier Duoandikoetxea, José L. Rubio de Francia, James Vance, Stephen Wainger, and David Weinberg,*𝐿^{𝑝} estimates for maximal functions and Hilbert transforms along flat convex curves in 𝑅²*, Bull. Amer. Math. Soc. (N.S.)**14**(1986), no. 2, 263–267. MR**828823**, 10.1090/S0273-0979-1986-15433-9**7.**J. Kim,*Hilbert transforms and maximal functions along curves in the Heisenberg group*, Ph.D. thesis, University of Wisconsin-Madison (1998).**8.**D. H. Phong and E. M. Stein,*Hilbert integrals, singular integrals, and Radon transforms. I*, Acta Math.**157**(1986), no. 1-2, 99–157. MR**857680**, 10.1007/BF02392592**9.**Fulvio Ricci and E. M. Stein,*Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals*, J. Funct. Anal.**73**(1987), no. 1, 179–194. MR**890662**, 10.1016/0022-1236(87)90064-4**10.**Andreas Seeger,*𝐿²-estimates for a class of singular oscillatory integrals*, Math. Res. Lett.**1**(1994), no. 1, 65–73. MR**1258491**, 10.4310/MRL.1994.v1.n1.a8

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
44A12,
42B20

Retrieve articles in all journals with MSC (2000): 44A12, 42B20

Additional Information

**Jonathan M. Bennett**

Affiliation:
Department of Mathematics and Statistics, JCMB, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JZ, Scotland

DOI:
https://doi.org/10.1090/S0002-9947-02-03087-8

Received by editor(s):
May 4, 1999

Published electronically:
July 16, 2002

Additional Notes:
Partially supported by EPSRC Grant GR/L10024

Article copyright:
© Copyright 2002
American Mathematical Society