Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

The Orevkov invariant of an affine plane curve


Authors: Walter D. Neumann and Paul Norbury
Journal: Trans. Amer. Math. Soc. 355 (2003), 519-538
MSC (2000): Primary 14H30, 14R10, 57M25
Published electronically: October 1, 2002
MathSciNet review: 1932711
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that although the fundamental group of the complement of an algebraic affine plane curve is not easy to compute, it possesses a more accessible quotient, which we call the Orevkov invariant.


References [Enhancements On Off] (What's this?)

  • 1. S. Abhyankar, On the semigroup of a meromorphic curve, Proc. Internat. Sympos. Algebraic Geometry, Kyoto (1977), 249-414. MR 83h:14020
  • 2. S. A. Broughton, On the topology of polynomial hypersurfaces, Proc. Amer. Math. Soc. Sympos. Pure Math. 40 (1983), 167-178. MR 85d:14033
  • 3. Pierre Deligne, Le groupe du complement d'une courbe plane n'ayant que des points ordinaires est abelien (d'apres W. Fulton), Seminaire Bourbaki, Lecture Notes in Math. 842, Springer Verlag (1981), 1-10. MR 83f:14026
  • 4. A. Dimca and A. Nemethi, On the monodromy of complex polynomials, Duke Math. J. 108 (2001), 199-209.
  • 5. D. Eisenbud and W. D. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Ann. Math. Stud. 110, Princeton Univ. Press (1985). MR 87g:57007
  • 6. W. Fulton, On the fundamental group of the complement of a node curve, Ann. of Math. 111 (1980), 407-409. MR 82e:14035
  • 7. S. Kaliman, Rational polynomials with a ${\mathbb C}^*$-fiber, Pacific J. Math. 174 (1996), 141-194. MR 97h:14026
  • 8. A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49 (1982), 833-851. MR 84g:14030
  • 9. W. D. Neumann, Complex algebraic curves via their links at infinity, Invent. Math. 3 (1989), 445-489. MR 91c:57014
  • 10. W. D. Neumann, Irregular links at infinity of complex affine plane curves, Quarterly J. Math. 50 (1999), 301-320. MR 2001i:32047
  • 11. W. D. Neumann and P. Norbury, Vanishing cycles and monodromy of complex polynomials, Duke Math. J. 101 (2000), 487-497. MR 2002d:32048
  • 12. W. D. Neumann and P. Norbury, Unfolding polynomial maps at infinity, Math. Ann. 318 (2000), 149-180. MR 2001j:32028
  • 13. W. D. Neumann and L. Rudolph, Unfoldings in knot theory, Math. Ann. 278 (1987), 409-439 and Corrigendum 282 (1988), 349-351. MR 89j:57017a,b
  • 14. Madhav V. Nori, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983), 305-344. MR 86d:14027
  • 15. Mutsuo Oka, Two transforms of plane curves and their fundamental groups, J. Math. Sci. Univ. Tokyo 3 (1996), 399-433. MR 97j:14030
  • 16. S. Yu. Orevkov, The fundamental group of the complement of a plane algebraic curve, Mat. Sb. 137 (179) (1988), 260-270; English transl., Math. USSR Sb. 65 (1990), 267-277. MR 90e:14028
  • 17. S. Yu. Orevkov, The commutant of the fundamental group of the complement of a plane algebraic curve, Russian Math. Surveys 45 (1990), 221-222. MR 91g:14020
  • 18. P. Russell, Good and bad field generators, J. Math. Kyoto Univ. 17 (1977), 319-331. MR 56:2977
  • 19. A. Sathaye and J. Stenerson, On plane polynomial curves, Algebraic geometry and its applications, C.L. Bajaj, Ed., Springer (1994), 121-142. MR 95a:14032
  • 20. J. P. Serre, Algebraic groups and class fields, Graduate Texts in Math. 117, Springer-Verlag (1988). MR 88i:14041

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14H30, 14R10, 57M25

Retrieve articles in all journals with MSC (2000): 14H30, 14R10, 57M25


Additional Information

Walter D. Neumann
Affiliation: Department of Mathematics, Barnard College, Columbia University, New York, New York 10027
Email: neumann@math.columbia.edu

Paul Norbury
Affiliation: Department of Pure Mathematics, Adelaide University, Adelaide, Australia 5005
Address at time of publication: Department of Mathematics, Melbourne University, Parkville, Australia, 3052
Email: pnorbury@maths.adelaide.edu.au

DOI: http://dx.doi.org/10.1090/S0002-9947-02-03094-5
PII: S 0002-9947(02)03094-5
Received by editor(s): November 17, 2001
Published electronically: October 1, 2002
Additional Notes: Supported under NSF grant no.\ DMS-0083097
Article copyright: © Copyright 2002 American Mathematical Society