Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A generalized Minkowski problem with Dirichlet boundary condition


Author: Oliver C. Schnurer
Journal: Trans. Amer. Math. Soc. 355 (2003), 655-663
MSC (2000): Primary 35J65; Secondary 53C42
DOI: https://doi.org/10.1090/S0002-9947-02-03135-5
Published electronically: September 6, 2002
MathSciNet review: 1932719
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of hypersurfaces with prescribed boundary whose Weingarten curvature equals a given function that depends on the normal of the hypersurface.


References [Enhancements On Off] (What's this?)

  • 1. L. Caffarelli, L. Nirenberg, J. Spruck: The Dirichlet Problem for Nonlinear Second-Order Elliptic Equations I. Monge-Ampère Equation, Comm. Pure Applied Math. 37 (1984), 369-402. MR 87f:35096
  • 2. L. Caffarelli, L. Nirenberg, J. Spruck: The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261-301. MR 87f:35098
  • 3. S.-Y. Cheng, S.-T. Yau: On the Regularity of the Solution of the $n$-Dimensional Minkowski Problem, Comm. Pure Appl. Math. 29 (1976), 495-516. MR 54:11247
  • 4. C. Gerhardt: Closed Weingarten hypersurfaces in Riemannian manifolds, J. Differential Geom. 43 (1996), 612-641. MR 97g:53067
  • 5. B. Guan, P. Guan: Convex hypersurfaces of prescribed curvature, to appear in Ann. of Math..
  • 6. B. Guan: The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauß curvature, Trans. Amer. Math. Soc. 350, No. 12, (1998), 4955-4971. MR 99b:53055
  • 7. B. Guan, J. Spruck: Boundary-value problems on $\mathbb{S} ^n$ for surfaces of constant Gauss curvature, Ann. Math. 138 (1993), 601-624. MR 94i:53039
  • 8. N. M. Ivochkina, F. Tomi: Locally convex hypersurfaces of prescribed curvature and boundary, Calc. Var. and PDEs 7 (1998), 293-314. MR 2000b:53043
  • 9. T. Nehring: Hypersurfaces of prescribed Gauß curvature and boundary in Riemannian manifolds, J. reine angew. Math. 501 (1998), 143-170. MR 99i:53041
  • 10. O. C. Schnürer: The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds, Math. Z. 242 (2002), 159-181.
  • 11. M. E. Taylor: Partial differential equations. III. Nonlinear equations, Applied Mathematical Sciences, 117, Springer, New York, 1997, xxii+608 pp. MR 98k:35001
  • 12. N. S. Trudinger: On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995), 151-164. MR 96m:35113

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J65, 53C42

Retrieve articles in all journals with MSC (2000): 35J65, 53C42


Additional Information

Oliver C. Schnurer
Affiliation: Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22–26, D-04103 Leipzig, Germany
Address at time of publication: Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, USA
Email: Oliver.Schnuerer@mis.mpg.de, schnuere@math.harvard.edu

DOI: https://doi.org/10.1090/S0002-9947-02-03135-5
Keywords: Minkowski problem, Dirichlet problem, prescribed curvature, convex hypersurfaces
Received by editor(s): November 8, 2000
Published electronically: September 6, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society