Noetherian PI Hopf algebras are Gorenstein

Authors:
Q.-S. Wu and J. J. Zhang

Journal:
Trans. Amer. Math. Soc. **355** (2003), 1043-1066

MSC (2000):
Primary 16E10, 16W30

DOI:
https://doi.org/10.1090/S0002-9947-02-03106-9

Published electronically:
October 24, 2002

MathSciNet review:
1938745

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every noetherian affine PI Hopf algebra has finite injective dimension, which answers a question of Brown (1998).

**[AjSZ]**K. Ajitabh, S. P. Smith and J. J. Zhang, Auslander-Gorenstein rings, Comm. Algebra,**26**1998, 2159-2180.MR**99g:16010****[ArSZ]**M. Artin, L. W. Small and J. J. Zhang, Generic flatness for strongly Noetherian algebras, J. Algebra**221**(1999), 579-610. MR**2001a:16006****[Br]**K. A. Brown, Representation theory of Noetherian Hopf algebras satisfying a polynomial identity, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997), 49-79, Contemp. Math.,**229**, American Mathematical Society, Providence, RI, 1998.MR**99m:16056****[BG]**K. A. Brown and K. R. Goodearl, Homological aspects of Noetherian PI Hopf algebras and irreducible modules of maximal dimension, J. Algebra**198**(1997), 240-265.MR**99c:16036****[DG]**M. Demazure and P. Gabriel, ``Introduction to algebraic geometry and algebraic groups'', Translated from the French by J. Bell, North-Holland Mathematics Studies,**39**. North-Holland Publishing Co., Amsterdam-New York, 1980. MR**82e:14001****[GL]**K. R. Goodearl and T. H. Lenagan, Catenarity in quantum algebras, J. Pure Appl. Algebra,**111**(1996), 123-142.MR**97e:16054****[GW]**K. R. Goodearl and R. B. Warfield, Jr., ``An Introduction to Noncommutative Noetherian Rings,'' London Math. Soc. Student Texts, Vol.**16**, Cambridge Univ. Press, Cambridge, 1989.MR**91c:16001****[Is]**F. Ischebeck, Eine Dualität zwischen den Funktoren Ext und Tor (German), J. Algebra**11**(1969), 510-531.MR**38:5894****[KL]**G. R. Krause and T. H. Lenagan, ``Growth of algebras and Gelfand-Kirillov dimension'', Revised edition, Graduate Studies in Mathematics,**22**. American Mathematical Society, Providence, RI, 2000.MR**2000j:16035****[LR1]**R. G. Larson and D. E. Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic are semisimple, J. Algebra**117**(1988), no. 2, 267-289.MR**89k:16016****[LR2]**R. G. Larson and D. E. Radford, Semisimple cosemisimple Hopf algebras, Amer. J. Math.**110**(1988), no. 1, 187-195. MR**89a:16011****[LS]**R. G. Larson and M. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math.**91**(1969) 75-94.MR**39:1523****[Le]**T. Levasseur, Some properties of noncommutative regular graded rings, Glasgow Math. J.**34**(1992), 277-300. MR**93k:16045****[MR]**J. C. McConnell and J. C. Robson, ``Noncommutative Noetherian Rings,'' Wiley, Chichester, 1987.MR**89j:16023****[Mol]**R. K. Molnar, A commutative Noetherian Hopf algebra over a field is finitely generated. Proc. Amer. Math. Soc.**51**(1975), 501-502.MR**51:12915****[Mon]**S. Montgomery, Hopf algebras and their actions on rings. CBMS Regional Conference Series in Mathematics,**82**, American Mathematical Society, Providence, RI, 1993.MR**94i:16019****[NR]**W. D. Nichols and M. B. Richmond, Freeness of infinite-dimensional Hopf algebras. Comm. Algebra**20**(1992), no. 5, 1489-1492.MR**93d:16054****[NZ]**W. D. Nichols and M. B. Zoeller, A Hopf algebra freeness theorem. Amer. J. Math.**111**(1989), no. 2, 381-385. MR**90c:16008****[OS]**U. Oberst and H.-J. Schneider, Untergruppen formeller Gruppen von endlichem Index. (German) J. Algebra**31**(1974), 10-44.MR**50:13057****[Po]**N. Popescu, Abelian categories with applications to rings and modules. London Mathematical Society Monographs, No. 3. Academic Press, London-New York, 1973.MR**49:5130****[Ra]**D. E. Radford, Freeness (projectivity) criteria for Hopf algebras over Hopf subalgebras, J. Pure Appl. Algebra**11**(1977/78), no. 1-3, 15-28.MR**57:16344****[Rot]**J. J. Rotman, ``An introduction to homological algebra'', Pure and Applied Mathematics, 85. Academic Press, Inc. New York-London, 1979.MR**80k:18001****[Row]**L. H. Rowen, ``Ring theory'', Student edition. Academic Press, Inc., Boston, MA, 1991.MR**94e:16001****[Sm]**L.W. Small,*Rings satisfying a polynomial identity*, Lecture Notes, Universität Essen (1980).MR**82j:16028****[SZ]**J. T. Stafford and J. J. Zhang, Homological properties of (graded) noetherian PI rings, J. Algebra**168**(1994), 988-1026.MR**95h:16030****[Ta1]**M. Takeuchi, A correspondence between Hopf ideals and sub-Hopf algebras, Manuscripta Math.**7**(1972), 251-270. MR**48:328****[Ta2]**M. Takeuchi, Relative Hopf modules--equivalences and freeness criteria, J. Algebra**60**(1979), no. 2, 452-471.MR**82m:16006****[Va]**P. Vámos, On the minimal prime ideal of a tensor product of two fields, Math. Proc. Cambridge Philos. Soc.**84**(1978), no. 1, 25-35.MR**80j:12016****[WZ1]**Q.-S. Wu and J. J. Zhang, Homological identities for noncommutative rings, J. Algebra,**242**(2001), 516-535.**[WZ2]**Q.-S. Wu and J. J. Zhang, Gorenstein Property of Hopf Graded Algebras, Glasgow Math. J., (to appear).**[WZ3]**Q.-S. Wu and J. J. Zhang, Regularity of Involutory PI Hopf Algebras, J. Algebra, (to appear).**[Ye]**A. Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra**153**(1992), 41-84.MR**94a:16077****[YZ1]**A. Yekutieli and J. J. Zhang, Rings with Auslander dualizing complexes, J. Algebra**213**(1999), 1-51.MR**2000f:16012****[YZ2]**A. Yekutieli and J. J. Zhang, Residue complexes over noncommutative rings, J. Algebra, to appear. ArXiv: math.RA/0103075.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
16E10,
16W30

Retrieve articles in all journals with MSC (2000): 16E10, 16W30

Additional Information

**Q.-S. Wu**

Affiliation:
Institute of Mathematics, Fudan University, Shanghai, 200433, China

Email:
qswu@fudan.edu.cn

**J. J. Zhang**

Affiliation:
Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195

Email:
zhang@math.washington.edu

DOI:
https://doi.org/10.1090/S0002-9947-02-03106-9

Keywords:
Hopf algebra,
injective dimension

Received by editor(s):
May 22, 2002

Published electronically:
October 24, 2002

Additional Notes:
The first author was supported in part by the NSFC (project 10171016) and the second author was supported in part by the NSF

Article copyright:
© Copyright 2002
American Mathematical Society