Homological properties of balanced Cohen-Macaulay algebras

Author:
Izuru Mori

Journal:
Trans. Amer. Math. Soc. **355** (2003), 1025-1042

MSC (2000):
Primary 16W50, 16E05, 16E65, 16E10

DOI:
https://doi.org/10.1090/S0002-9947-02-03166-5

Published electronically:
October 24, 2002

MathSciNet review:
1938744

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A balanced Cohen-Macaulay algebra is a connected algebra having a balanced dualizing complex in the sense of Yekutieli (1992) for some integer and some graded - bimodule . We study some homological properties of a balanced Cohen-Macaulay algebra. In particular, we will prove the following theorem:

As a corollary, we will have the following characterizations of AS Gorenstein algebras and AS regular algebras:

**1.**M. Artin and J. J. Zhang,*Noncommutative Projective Schemes*, Adv. Math.**109**(1994), 228-287. MR**96a:14004****2.**M. Auslander and R. Buchweitz,*The Homological Theory of Maximal Cohen-Macaulay Approximations*, Mem. Soc. Math. de France**38**(1989), 5-37. MR**91h:13010****3.**L. L. Avramov and H.-B. Foxby,*Homological Dimensions of Unbounded Complexes*, J. of Pure and Appl. Algebra**71**(1991), 129-155. MR**93g:18017****4.**L. L. Avramov and H.-B. Foxby,*Ring Homomorphisms and Finite Gorenstein Dimensions*, Proc. London Math. Soc. (3)**75**(1997), 241-270. MR**98d:13014****5.**P. Jörgensen,*Local Cohomology for Non-commutative Graded Algebras*, Comm. Algebra**25**(1997), 575-591. MR**97j:16013****6.**P. Jörgensen,*Non-commutative Graded Homological Identities*, J. London Math. Soc. (2)**57**(1998), 336-350. MR**99h:16010****7.**P. Jörgensen,*Properties of AS-Cohen-Macaulay Algebras*, J. of Pure and Appl. Algebra**138**(1999), 239-249. MR**2000c:16014****8.**P. Jörgensen,*Gorenstein Homomorphisms of Noncommutative Rings*, J. Algebra**211**(1999), 240-267. MR**2000c:16013****9.**P. Jörgensen and J. J. Zhang,*Gourmet's Guide to Gorensteinness*, Adv. Math.**151**(2000), 313-345. MR**2001d:16023****10.**I. Mori,*Intersection Multiplicity over Noncommutative Algebras*, J. Algebra**252**(2002), 241-257.**11.**S. P. Smith,*Non-commutative Algebraic Geometry*, lecture notes, University of Washington, (1994).**12.**M. Van den Bergh,*Existence Theorems for Dualizing Complexes over Non-commutative Graded and Filtered Rings*, J. Algebra**195**(1997), 662-679. MR**99b:16010****13.**A. Yekutieli,*Dualizing Complexes over Noncommutative Graded Algebras*, J. Algebra**153**(1992), 41-84. MR**94a:16077**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
16W50,
16E05,
16E65,
16E10

Retrieve articles in all journals with MSC (2000): 16W50, 16E05, 16E65, 16E10

Additional Information

**Izuru Mori**

Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Address at time of publication:
Department of Mathematics, Syracuse University, Syracuse, New York, 13244-1150

Email:
mori@math.purdue.edu, imori@syr.edu

DOI:
https://doi.org/10.1090/S0002-9947-02-03166-5

Received by editor(s):
October 10, 2001

Received by editor(s) in revised form:
February 5, 2002

Published electronically:
October 24, 2002

Article copyright:
© Copyright 2002
American Mathematical Society