Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Hyperbolic mean growth of bounded holomorphic functions in the ball

Author: E. G. Kwon
Journal: Trans. Amer. Math. Soc. 355 (2003), 1269-1294
MSC (2000): Primary 30D45, 32A35, 47B33
Published electronically: November 5, 2002
MathSciNet review: 1938757
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the hyperbolic Hardy class $\varrho H^{p}(B)$, $0<p<\infty $. It consists of $\phi $ holomorphic in the unit complex ball $B$ for which $\vert \phi \vert < 1$ and

\begin{displaymath}\sup _{0<r<1} \, \int _{\partial B} \left \{ \varrho (\phi (r\zeta ), 0)\right \}^{p} \, d\sigma (\zeta ) ~<~ \infty ,\end{displaymath}

where $\varrho $denotes the hyperbolic distance of the unit disc. The hyperbolic version of the Littlewood-Paley type $g$-function and the area function are defined in terms of the invariant gradient of $B$, and membership of $\varrho H^{p}(B)$ is expressed by the $L^{p}$ property of the functions. As an application, we can characterize the boundedness and the compactness of the composition operator $\mathcal{C}_{\phi }$, defined by $\mathcal{C}_{\phi }f = f\circ \phi $, from the Bloch space into the Hardy space $H^{p}(B)$.

References [Enhancements On Off] (What's this?)

  • [A] Patrick. R. Ahern, On the behavior near a torus of functions holomorphic in the ball, Pacific J. Math. 107 (1983), 267-278. MR 84i:32023
  • [AB] P. Ahern and J. Bruna, Maximal and area integral characterization of Hardy-Sobolov spaces in the unit ball of $\mathbb{C}^{n}$, Revista Mathematica Iberoamericana 4(1) (1988), 123-153. MR 90h:32011
  • [ABC] P. Ahern J. Bruna and C. Cascante, $H^{p}$-theory for generalized M-harmonic functions in the unit ball, Indiana Univ. Math. J. 45 (1996), 101-135. MR 98f:32008
  • [ACP] J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37. MR 50:13536
  • [AR1] P. Ahern and W. Rudin, Bloch functions, BMO, and boundary zeros, Indiana Univ. Math. J. 36 (1987), 131-148. MR 88d:42036
  • [AR2] -, Paley-type gap theorems for $H^{p}$-functions on the ball, Indiana Univ. Math. J. 37 (1988), 255-275. MR 89k:32007
  • [BBG] Aline Bonami, Joaquim Bruna and Sandrine Grellier, On Hardy, BMO and Lipschitz spaces of invariantly harmonic functions in the unit ball, Proc. London Math. Soc. 77 (1998), 665-696. MR 99g:31008
  • [C1] Boo Rim Choe, Cauchy integral equalities and applications, Trans. Amer. Math. Soc. 315 (1989), 337-352. MR 89m:32010
  • [C2] -, Composition property of holomorphic functions on the ball, Michigan Math. J. 36 (1989), 289-301. MR 90g:32005
  • [CC] Jun Soo Choa and Boo Rim Choe, Composition with a homogeneous polynomial, Bull. Korean Math. Soc. 29 (1992), 57-63. MR 94d:32008
  • [CK] J. S. Choa and H. O. Kim, Composition with a nonhomogeneous bounded holomorphic function on the ball, Canad. J. Math. 41 (1989), 870-881. MR 91a:32006
  • [CM] Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, FL, 1994. MR 97i:47056
  • [CRU] B. R. Choe, W. Ramey and D. Ullrich, Bloch -to-BMOA pullbacks on the disk, Proc. Amer. Math. Soc. 125 (1997), 2987-2996. MR 97m:47039
  • [CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. MR 54:843
  • [D] Peter. L. Duren, Theory of $H^{p}$functions, Academic Press, New York, 1970. MR 42:3552
  • [FS] C. Fefferman and E. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1971), 137-193. MR 56:6263
  • [G] John. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 83g:30037
  • [H] Sigurdur Helgason, Groups and geometric analysis, Academic Press, New York, NY, 1984. MR 86c:22017
  • [K1] E. G. Kwon, Composition of Blochs with bounded analytic functions, Proc. Amer. Math. Soc. 124 (1996), 1473-1480. MR 96j:30052
  • [K2] -, Fractional integration and the hyperbolic derivative, Bull. Austral. Math. Soc. 38 (1988), 357-364. MR 90a:30096
  • [K3] -, Holomorphic functions of Bergman BMO in the ball, preprint.
  • [K4] -, Mean growth of the hyperbolic Hardy class functions, Mathematica Japonica 35 (1990), 451-460. MR 91e:30064
  • [K5] -, On analytic functions of Bergman BMO in the ball, Canad. Math. Bull. 42(1) (1999), 97-103. MR 2001a:32005
  • [KC] E. G. Kwon and J. S. Choa, On hyperbolic Hardy class functions and composition operators, Kor. J. Math. Sciences 124 (1997), 119-126.
  • [KL] Steven G. Krantz and Song-Ying Li, Area integral characterizations of functions in Hardy spaces on domains in $\mathbb{C}^{n}$, Complex Variables 32 (1997), 373-399. MR 98m:32003
  • [Ma] Shamil Makhmutov, On Bloch-to-Besov composition operators, Proc. Japan. Acad. Ser. A Math. Sci. 72 (1996), 232-234. MR 98k:47058b
  • [P] M. Pavlovic, Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball, Indag. Math., N.S. 2(1) (1991), 89-98. MR 92d:32008
  • [PX] F. Pérez-González and J. Xiao, Bloch-Hardy pullbacks, preprint.
  • [R] Walter Rudin, Function theory in the unit ball of $\mathbb{C}^{n}$, Springer-Verlag, New York, 1980. MR 82i:32002
  • [RU] Wade Ramey and David Ullrich, Bounded mean oscillations of Bloch pull-backs, Math. Ann. 291 (1991), 591-606. MR 92i:32004
  • [Rus] P. Russo, Boundary behavior of BMOA($B_{n}$), Trans. Amer. Math. Soc. 292 (1985), 733-740. MR 87d:32030
  • [S] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970. MR 44:7280
  • [Sta] Charles S. Stanton, $H^{p}$ and $BMOA$ pullback properties of smooth maps, Indiana Univ. Math. J. 40 (1991), 1251-1265. MR 93c:32006
  • [Sto1] M. Stoll, Invariant potential theory in the unit ball of $\mathbb{C}^{n}$, New York, 1994. MR 96f:31011
  • [Sto2] -, A characterization of Hardy spaces of the unit ball of $\mathbb{C}^{n}$, J. London Math. Soc. 48 (1993), 126-136. MR 94g:32006
  • [Y1] Shinji Yamashita, Hyperbolic Hardy classes and hyperbolically Dirichlet-finite functions, Hokkaido Math. J., Special Issue 10 (1981), 709-722. MR 83i:30048
  • [Y2] -, Hyperbolic Hardy class $H^{1}$, Math. Scand. 45 (1979), 261- 266. MR 81i:30059
  • [Y3] -, Holomorphic functions of hyperbolically bounded mean oscillation, Boll. Un. Mat. Ital. B (6) 5 (1986), 983-1000. MR 88e:30092
  • [Y4] -, Smoothness of the boundary values of functions bounded and holomorphic in the disk, Trans. Amer. Math. Soc. 272 (1982), 539-544. MR 83i:30049
  • [Zha] Ruhan Zhao, Composition operators from Bloch type spaces to Hardy Besov spaces, J. Math. Anal. Appl. 233 (1999), 749-766. MR 2000a:47051
  • [Zhu] Kehe Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990. MR 92c:47031
  • [Zy] A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, 1959. MR 21:6498

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 30D45, 32A35, 47B33

Retrieve articles in all journals with MSC (2000): 30D45, 32A35, 47B33

Additional Information

E. G. Kwon
Affiliation: Department of Mathematics Education, Andong National University, Andong 760-749, S. Korea

PII: S 0002-9947(02)03169-0
Keywords: $H^{p}$ space, Bloch space, hyperbolic Hardy class, composition operator, Littlewood-Paley $g$-function, invariant gradient
Received by editor(s): May 15, 2001
Published electronically: November 5, 2002
Additional Notes: This work was supported by grant No. R01-2000-000-00001-0 from the Basic Research Program of the Korea Science & Engineering Foundation.
Article copyright: © Copyright 2002 American Mathematical Society