Erratum to ``Subgroup properties of fully residually free groups''
Author:
Ilya Kapovich
Journal:
Trans. Amer. Math. Soc. 355 (2003), 12951296
MSC (2000):
Primary 20F65
Published electronically:
November 7, 2002
Original Article:
Trans. Amer. Math. Soc. 354 (2002), 335362.
MathSciNet review:
1938758
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 1.
R. G. Burns, On the finitely generated subgroups of an amalgamated product of two groups, Trans. Amer. Math. Soc. 169 (1972), 293306. MR 51:8260
 2.
R. G. Burns, Finitely generated subgroups of HNN groups, Canad. J. Math. 25 (1973), 11031112. MR 48:8642
 3.
D. Cohen, Combinatorial group theory: A topological approach, London Mathematical Society Student Texts, 14; Cambridge University Press, Cambridge, 1989. MR 91d:20001
 4.
I. Kapovich, Subgroup properties of fully residually free groups, Trans. Amer. Math. Soc., 354 (2002), 335362. MR 2002h:20058
 5.
I. Kapovich, Detecting quasiconvexity: Algorithmic aspects, in ``Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994)'', 9199, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 25, Amer. Math. Soc., Providence, RI, 1996. MR 97e:20051
 6.
O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group, I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998), no. 2, 472516. MR 2000b:20032a
 7.
O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group, II. Systems in triangular quasiquadratic form and description of residually free groups, J. Algebra 200 (1998), no. 2, 517570. MR 2000b:20032b
 8.
A. Myasnikov, Subgroups of free exponential groups, City College of CUNY, preprint in preparation.
 9.
A. Myasnikov and V. Remeslennikov, Exponential groups, II. Extensions of centralizers and tensor completion of CSAgroups, Internat. J. Algebra Comput. 6 (1996), no. 6, 687711. MR 97j:20039
 1.
 R. G. Burns, On the finitely generated subgroups of an amalgamated product of two groups, Trans. Amer. Math. Soc. 169 (1972), 293306. MR 51:8260
 2.
 R. G. Burns, Finitely generated subgroups of HNN groups, Canad. J. Math. 25 (1973), 11031112. MR 48:8642
 3.
 D. Cohen, Combinatorial group theory: A topological approach, London Mathematical Society Student Texts, 14; Cambridge University Press, Cambridge, 1989. MR 91d:20001
 4.
 I. Kapovich, Subgroup properties of fully residually free groups, Trans. Amer. Math. Soc., 354 (2002), 335362. MR 2002h:20058
 5.
 I. Kapovich, Detecting quasiconvexity: Algorithmic aspects, in ``Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994)'', 9199, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 25, Amer. Math. Soc., Providence, RI, 1996. MR 97e:20051
 6.
 O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group, I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998), no. 2, 472516. MR 2000b:20032a
 7.
 O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group, II. Systems in triangular quasiquadratic form and description of residually free groups, J. Algebra 200 (1998), no. 2, 517570. MR 2000b:20032b
 8.
 A. Myasnikov, Subgroups of free exponential groups, City College of CUNY, preprint in preparation.
 9.
 A. Myasnikov and V. Remeslennikov, Exponential groups, II. Extensions of centralizers and tensor completion of CSAgroups, Internat. J. Algebra Comput. 6 (1996), no. 6, 687711. MR 97j:20039
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
20F65
Retrieve articles in all journals
with MSC (2000):
20F65
Additional Information
Ilya Kapovich
Affiliation:
Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801
Email:
kapovich@math.uiuc.edu
DOI:
http://dx.doi.org/10.1090/S0002994702032014
PII:
S 00029947(02)032014
Received by editor(s):
August 28, 2002
Published electronically:
November 7, 2002
Article copyright:
© Copyright 2002
American Mathematical Society
