Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Logmodularity and isometries of operator algebras


Authors: David P. Blecher and Louis E. Labuschagne
Journal: Trans. Amer. Math. Soc. 355 (2003), 1621-1646
MSC (2000): Primary 46L07, 46J10, 46L52, 47L30; Secondary 46E25, 47B33
DOI: https://doi.org/10.1090/S0002-9947-02-03195-1
Published electronically: December 4, 2002
MathSciNet review: 1946408
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize some facts about function algebras to operator algebras, using the ``noncommutative Shilov boundary'' or ``$C^*$-envelope'' first considered by Arveson. In the first part we study and characterize complete isometries between operator algebras. In the second part we introduce and study a notion of logmodularity for operator algebras. We also give a result on conditional expectations. Many miscellaneous applications are provided.


References [Enhancements On Off] (What's this?)

  • 1. M. Anoussis and E. G. Katsoulis, Compact Operators and the Geometric Structure of Nest Algebras, Indiana. Univ. Math. J. 46 (1997), 319-336. MR 98e:47066b
  • 2. J. Araujo and J. J. Font, Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc. 349 (1997), 413-428. MR 97d:46026
  • 3. J. Arazy and B. Solel, Isometries of nonselfadjoint operator algebras, J. Funct. Anal. 90 (1990), 284-305. MR 91c:47085
  • 4. A. Arias and G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J. Math. 115 (2000), 205-235. MR 2001f:47021
  • 5. W. B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578-642. MR 36:6946
  • 6. W. B. Arveson, Subalgebras of $C^{*}$-algebras, Acta Math. 123 (1969), 141-22. MR 40:6274
  • 7. W. B. Arveson, Subalgebras of $C^{*}$-algebras II, Acta Math. 128 (1972), 271-308. MR 52:15035
  • 8. D. P. Blecher, Commutativity in operator algebras, Proc. Amer. Math. Soc. 109 (1990), 709-715. MR 90k:46128
  • 9. D. P. Blecher, Modules over operator algebras and the maximal $C^*$-dilation, J. Funct. Anal. 169 (1999), 251-288. MR 2000j:47122
  • 10. D. P. Blecher, The Shilov boundary of an operator space, and the characterization theorems, J. Funct. Anal. 182 (2001), 280-343. MR 2002d:46049
  • 11. D. P. Blecher, Multipliers and dual operator algebras, J. Funct. Anal. 183 (2001), 498-525.
  • 12. D. P. Blecher and D. Hay, Complete isometries into $C^*$-algebras, preprint (March '02), http://front.math.ucdavis.edu/math.OA/0203182 .
  • 13. D. P. Blecher and K. Jarosz, Isomorphisms of function modules, and generalized approximation in modulus, Trans. Amer. Math. Soc. 354 (2002), 3663-3701.
  • 14. L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math. 76 (1962), 547-559. MR 25:5186
  • 15. M. D. Choi and E. G. Effros, The completely positive lifting problem for $C^*$-algebras, Ann. of Math. 104 (1976), 585-609. MR 54:5843
  • 16. C-H. Chu and N-C. Wong, Isometries between $C^{*}$-algebras, Rev. Mat. Iberoamericana, to appear.
  • 17. J. B. Conway, A Course in Operator Theory, Amer. Math. Soc., Providence, RI, 2000. MR 2001d:47001
  • 18. E. G. Effros and Z. J. Ruan, On non-self-adjoint operator algebras, Proc. Amer. Math. Soc. 110 (1990), 915-922. MR 91c:47086
  • 19. E. G. Effros and Z. J. Ruan, Operator Spaces, Oxford University Press, Oxford, 2000. MR 2002a:46082
  • 20. M. El-Gebeily and J. Wolfe, Isometries of the disk algebra, Proc. Amer. Math. Soc. 93 (1985), 697-702. MR 86j:46058
  • 21. T. W. Gamelin, Uniform Algebras, $2^{nd}$ ed., Chelsea, New York, 1984. MR 53:14137 (1st ed.)
  • 22. M. Hamana, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci. 15 (1979), 773-785. MR 81h:46071
  • 23. M. Hamana, Triple envelopes and Silov boundaries of operator spaces, Math. J. Toyama Univ. 22 (1999), 77-93. MR 2001a:46057
  • 24. K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317. MR 26:6820
  • 25. K. Hoffman, Banach spaces of analytic functions, Dover, New York, 1988. MR 92d:46066
  • 26. K. Jarosz and V. Pathak, Isometries and small bound peturbations of function spaces. In: Function Spaces, Lecture Notes in Pure and Applied Math., Vol. 136, Marcel Dekker, New York, 1992, 241-271. MR 93b:47061
  • 27. R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338. MR 13:256a
  • 28. E. Kirchberg, On restricted peturbations in inverse images and a description of normalizer algebras in $C^*$-algebras, J. Funct. Anal. 129 (1995), 1-34. MR 95m:46094a
  • 29. L. E. Labuschagne, Analogues of composition operators on non-commutative $H^p$-spaces, J. Operator Theory, to appear.
  • 30. L. E. Labuschagne, Composition operators on non-commutative $L_p$-spaces, Expo. Math. 17 (1999), 429-468. MR 2001f:46099
  • 31. C. Le Merdy, An operator space characterization of dual operator algebras, Amer. J. Math. 121 (1999), 55-63. MR 2001f:46086
  • 32. C. Le Merdy, Finite rank approximations and semidiscreteness for linear operators, Ann. Inst. Fourier (Grenoble) 49 (1999), 1869-1901. MR 2001b:46092
  • 33. G. Lumer, Analytic functions and Dirichlet problems, Bull. Amer. Math. Soc. 70 (1964), 98-104. MR 28:1509
  • 34. M. McAsey, P. Muhly, and K.-S. Saito, Nonselfadjoint crossed products (invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979), 381-409. MR 80j:46101b
  • 35. M. Marsalli and G. West, Noncommutative $H^p$-spaces, J. Operator Theory 40 (1998), 339-355. MR 2001b:46117
  • 36. A. Matheson, Isometries into function algebras, Houston J. Math., to appear.
  • 37. M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kodai Math. Sem. Rep. 11 (1959), 182-188. MR 22:12379
  • 38. W. P. Novinger, Linear isometries of subspaces of spaces of continuous functions, Studia Math. 53 (1975), 273-276. MR 54:5818
  • 39. D. P. O' Donovan and K. R. Davidson, Isometric images of $C^*$-algebras, Canad. Math. Bull. 27 (1984), 286-294. MR 85h:46081
  • 40. V. I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Math., vol. 146, Longman, London, 1986. MR 88h:46111
  • 41. G. Pedersen, $C^*$-algebras and their automorphism groups, Academic Press, London, 1979. MR 81e:46037
  • 42. G. Pisier, Introduction to operator space theory, Cambridge University Press, to appear. (French original, MR 98e:46019)
  • 43. G. Pisier and Q. Xu, Noncommutative $L^p$ spaces, Handbook on the geometry of Banach spaces (Vol. 2), to appear. Ed.: W. B. Johnson and J. Lindenstrauss.
  • 44. D. Pitts, Factorization problems for nests: factorization methods and characterizations of the universal factorization property, J. Funct. Anal. 79 (1988), 57-90. MR 90a:47101
  • 45. Y-t. Poon and Z. J. Ruan, Operator algebras with contractive approximate identities, Canad. J. Math. 46 (1994), 397-414. MR 95d:47057
  • 46. S. C. Power, Factorization in analytic operator algebras, J. Funct. Anal. 67 (1986), 413-432. MR 87k:47040
  • 47. D. Sarason, Composition operators as integral operators. In: Analysis and partial differential equations, Marcel Dekker, New York, 1990, 545-565. MR 92a:47040
  • 48. R. K. Singh and J. S. Manhas, Composition operators on function spaces, North-Holland, Amsterdam, 1993. MR 95d:47036
  • 49. T. P. Srinivasan and J-K. Wang, Weak*-Dirichlet algebras. In: Ed. Frank T. Birtel, Function algebras, Scott Foresman and Co., 1966, 216-249. MR 33:6441
  • 50. E. L. Stout, The theory of uniform algebras, Bogden and Quigley, Tarrytown-on-Hudson, NY, 1971. MR 54:11066
  • 51. I. Suciu, Function algebras, Noordhoff Internat. Pub., Leyden, 1975. MR 51:6428
  • 52. M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979. MR 81e:46038
  • 53. M. Terp, $L^p$-spaces associated with von Neumann algebras, Copenhagen University, 1981.
  • 54. J. Tomiyama, Tensor products and pojections of norm one in von Neumann algebras, lecture notes, Copenhagen University, 1970.
  • 55. C. Zhang, Representations of operator spaces, J. Operator Theory 33 (1995), 327-351. MR 96h:46092
  • 56. D. P. Blecher and D. M. Hay, Complete isometries--an illustration of noncommutative functional analysis, Provisionally accepted, Proceedings of the Fourth Conference on Function Spaces, Contemp. Math., Amer. Math. Soc., Providence, RI.
  • 57. R. J. Fleming and J. E. Jamison, Isometries on Banach spaces: function spaces, CRC Press, to appear.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46L07, 46J10, 46L52, 47L30, 46E25, 47B33

Retrieve articles in all journals with MSC (2000): 46L07, 46J10, 46L52, 47L30, 46E25, 47B33


Additional Information

David P. Blecher
Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
Email: dblecher@math.uh.edu

Louis E. Labuschagne
Affiliation: Department of Mathematics, Applied Mathematics and Astronomy, P.O. Box 392, 0003 UNISA, South Africa
Email: labusle@unisa.ac.za

DOI: https://doi.org/10.1090/S0002-9947-02-03195-1
Received by editor(s): May 15, 2002
Received by editor(s) in revised form: September 4, 2002
Published electronically: December 4, 2002
Additional Notes: This research was supported in part by grants from the National Science Foundation and the University of South Africa.
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society