Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The $D$-module structure of $R[F]$-modules


Author: Manuel Blickle
Journal: Trans. Amer. Math. Soc. 355 (2003), 1647-1668
MSC (2000): Primary 13A35, 16S99, 16S32
DOI: https://doi.org/10.1090/S0002-9947-02-03197-5
Published electronically: November 22, 2002
MathSciNet review: 1946409
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $R$ be a regular ring, essentially of finite type over a perfect field $k$. An $R$-module $\mathcal{M}$ is called a unit $R[F]$-module if it comes equipped with an isomorphism $F^{e*} \mathcal{M} \xrightarrow{\ \ }\mathcal{M}$, where $F$ denotes the Frobenius map on $\operatorname{Spec}R$, and $F^{e*}$ is the associated pullback functor. It is well known that $\mathcal{M}$ then carries a natural $D_R$-module structure. In this paper we investigate the relation between the unit $R[F]$-structure and the induced $D_R$-structure on $\mathcal{M}$. In particular, it is shown that if $k$ is algebraically closed and $\mathcal{M}$ is a simple finitely generated unit $R[F]$-module, then it is also simple as a $D_R$-module. An example showing the necessity of $k$ being algebraically closed is also given.


References [Enhancements On Off] (What's this?)

  • 1. Pierre Berthelot.
    $\mathcal{D}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini.
    Ann. Sci. École Norm. Sup. (4), 29(2):185-272, 1996. MR 97b:14019
  • 2. Pierre Berthelot.
    $\mathcal{D}$-modules arithmétiques. II. Descente par Frobenius.
    Mém. Soc. Math. France (N.S.), 2000. MR 2001k:14043
  • 3. Manuel Blickle.
    The intersection homology ${D}$-module in finite characteristic.
    Ph.D. thesis, University of Michigan, 2001.
    arXiv:math.AG/0110244.
  • 4. Manuel Blickle.
    Tight closure and the intersection homology $D$-module in finite characteristic.
    in preparation, 2002.
  • 5. Rikard Bøgvad.
    Some results on ${D}$-modules on Borel varieties in characteristic $p>0$.
    J. Algebra, 173(3):638-667, 1995. MR 97a:14015
  • 6. Jean Dieudonné.
    Lie groups and Lie hyperalgebras over a field of characteristic $p>0$. II.
    Amer. J. Math., 77:218-244, 1955. MR 16:789f
  • 7. J. Dixmier.
    Représentationes irréductibles des algèbres de Lie nilpotentes.
    An. Acad. Brasil, 35:491-519, 1963. MR 32:165
  • 8. David Eisenbud.
    Commutative algebra.
    Springer-Verlag, New York, 1995. MR 97a:13001
  • 9. Mathew Emerton and Mark Kisin.
    Riemann-Hilbert correspondence for unit $\mathcal{F}$-crystals. I.
    in preperation, 1999.
  • 10. Mathew Emerton and Mark Kisin.
    Riemann-Hilbert correspondence for unit $\mathcal{F}$-crystals. II.
    in preperation, 2000.
  • 11. Burkhard Haastert.
    Über Differentialoperatoren und $\textbf{d}$-Moduln in positiver Charakteristik.
    Manuscripta Math., 58(4):385-415, 1987. MR 88i:14048
  • 12. Burkhard Haastert.
    On direct and inverse images of $d$-modules in prime characteristic.
    Manuscripta Math., 62(3):341-354, 1988. MR 89j:14011
  • 13. Craig L. Huneke and Rodney Y. Sharp.
    Bass numbers of local cohomology modules.
    Trans. Amer. Math. Soc., 339(2):765-779, 1993. MR 93m:13008
  • 14. Gennady Lyubeznik.
    Finiteness properties of local cohomology modules (an application of ${D}$-modules to commutative algebra).
    Invent. Math., 113(1):41-55, 1993. MR 94e:13032
  • 15. Gennady Lyubeznik.
    $\mathcal{F}$-modules: an application to local cohomology and $D$-modules in characteristic $p>0$.
    Journal für die reine und angewandte Mathematik, 491:65-130, 1997. MR 99c:13005
  • 16. Gennady Lyubeznik.
    Finiteness properties of local cohomology modules: a characteristic-free approach.
    J. Pure Appl. Algebra, 151(1):43-50, 2000. MR 2001g:13038
  • 17. Gennady Lyubeznik.
    Injective dimension of ${D}$-modules: a characteristic-free approach.
    J. Pure Appl. Algebra, 149(2):205-212, 2000. MR 2001g:13029
  • 18. Daniel Quillen.
    On the endomorphism ring of a simple module over an enveloping algebra. Proc. Amer. Math. Soc. 21:171-172, 1969. MR 39:252
  • 19. S. P. Smith.
    Differential operators on the affine and projective lines in characteristic $p>0$.
    In Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin, 37ème année (Paris, 1985), pages 157-177. Springer, Berlin, 1986. MR 89d:16047
  • 20. S. P. Smith.
    The global homological dimension of the ring of differential operators on a nonsingular variety over a field of positive characteristic.
    J. Algebra, 107(1):98-105, 1987. MR 88b:16045
  • 21. Amnon Yekutieli.
    An explicit construction of the Grothendieck residue complex.
    Astérisque, 208: 1992.
    With an appendix by Pramathanath Sastry. MR 94e:14026

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13A35, 16S99, 16S32

Retrieve articles in all journals with MSC (2000): 13A35, 16S99, 16S32


Additional Information

Manuel Blickle
Affiliation: Universität Essen, FB6 Mathematik, 45117 Essen, Germany
Email: manuel.blickle@uni-essen.de

DOI: https://doi.org/10.1090/S0002-9947-02-03197-5
Keywords: Modules with Frobenius action, $D$-modules, $F$-modules
Received by editor(s): May 10, 2002
Received by editor(s) in revised form: July 10, 2002
Published electronically: November 22, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society