Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Higher Weierstrass points on $X_{0}(p)$


Authors: Scott Ahlgren and Matthew Papanikolas
Journal: Trans. Amer. Math. Soc. 355 (2003), 1521-1535
MSC (2000): Primary 11G18; Secondary 11F33, 14H55
DOI: https://doi.org/10.1090/S0002-9947-02-03204-X
Published electronically: November 20, 2002
MathSciNet review: 1946403
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the arithmetic properties of higher Weierstrass points on modular curves $X_{0}(p)$ for primes $p$. In particular, for $r\in \{2, 3, 4, 5\}$, we obtain a relationship between the reductions modulo $p$ of the collection of $r$-Weierstrass points on $X_{0}(p)$ and the supersingular locus in characteristic $p$.


References [Enhancements On Off] (What's this?)

  • [A-O] S. Ahlgren and K. Ono, Weierstrass points on $X_{0}(p)$ and supersingular $j$-invariants, Math. Ann., to appear.
  • [At] A. O. L. Atkin, Weierstrass points at cusps of $X_{0}(N)$, Ann. of Math. (2) 85 (1967), 42-45. MR 36:1646
  • [B-C-P] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
  • [B-K-O] J. Bruinier, W. Kohnen, and K. Ono, The arithmetic of the values of modular functions and the divisors of modular forms, Compositio Math., to appear.
  • [B] J.-F. Burnol, Weierstrass points on arithmetic surfaces, Invent. Math. 107 (1992), 421-432. MR 93b:14040
  • [E] N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc., Providence, RI, 1998, pp. 21-76. MR 99a:11078
  • [F-K] H. M. Farkas and I. Kra, Riemann surfaces, Springer-Verlag, New York, 1992. MR 93a:30047
  • [G] E.-U. Gekeler, Some observations on the arithmetic of Eisenstein series for the modular group $\operatorname{SL}_{2}({\mathbb{Z} })$, Arch. Math. (Basel) 77 (2001), 5-21. MR 2002f:11050
  • [L-N] J. Lehner and M. Newman, Weierstrass points on $\Gamma _{0}(N)$, Ann. of Math. (2) 79 (1964), 360-368. MR 28:5045
  • [K-Z] M. Kaneko and D. Zagier, Supersingular $j$-invariants, hypergeometric series, and Atkin's orthogonal polynomials, Computational perspectives on number theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc., Providence, RI, 1998, pp. 97-126. MR 99b:11064
  • [M] D. Mumford, The red book of varieties and schemes, 2nd ed., Springer-Verlag, New York, 1999. MR 2001b:14001
  • [O1] A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. MR 51:514
  • [O2] A. Ogg, On the Weierstrass points of $X_{0}(N)$, Illinois J. Math. 22 (1978), 31-35. MR 57:3136
  • [R1] D. Rohrlich, Some remarks on Weierstrass points, Number Theory Related to Fermat's Last Theorem (ed. N. Koblitz), Birkhäuser, Prog. Math. 26 (1982), 71-78. MR 84d:14008
  • [R2] D. Rohrlich, Weierstrass points and modular forms, Illinois J. Math. 29 (1985), 134-141. MR 86e:11032
  • [Sc] B. Schoeneberg, Elliptic modular functions, Springer-Verlag, New York, Heidelberg, Berlin, 1974. MR 54:236
  • [Se] J.-P. Serre, Formes modulaires et fonctions zêta $p$-adiques, Modular functions of one variable, III, Lecture Notes in Math., Vol. 350, Springer-Verlag, Berlin, 1973, pp. 191-268. MR 53:7949b
  • [Sh] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, NJ, 1994, reprint of the 1971 original. MR 95e:11048; MR 47:3318
  • [Si] J. H. Silverman, Some arithmetic properties of Weierstrass points: hyperelliptic curves, Bol. Soc. Brasil. Mat. (N.S.) 21 (1990), 11-50. MR 92k:11066
  • [Sw] H. P. F. Swinnerton-Dyer, On $\ell $-adic representations and congruences for modular forms, Modular functions of one variable, III, Lecture Notes in Math., Vol. 350, Springer-Verlag, Berlin, 1973, pp. 1-55. MR 53:10717a

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11G18, 11F33, 14H55

Retrieve articles in all journals with MSC (2000): 11G18, 11F33, 14H55


Additional Information

Scott Ahlgren
Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Email: ahlgren@math.uiuc.edu

Matthew Papanikolas
Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
Email: map@math.brown.edu

DOI: https://doi.org/10.1090/S0002-9947-02-03204-X
Keywords: Weierstrass points, modular curves
Received by editor(s): July 31, 2002
Received by editor(s) in revised form: September 19, 2002
Published electronically: November 20, 2002
Additional Notes: The first author thanks the National Science Foundation for its support through grant DMS 01-34577
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society