Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Seiberg-Witten invariants, orbifolds, and circle actions


Author: Scott Jeremy Baldridge
Journal: Trans. Amer. Math. Soc. 355 (2003), 1669-1697
MSC (2000): Primary 57R57, 57M60; Secondary 55R35
DOI: https://doi.org/10.1090/S0002-9947-02-03205-1
Published electronically: December 6, 2002
MathSciNet review: 1946410
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of this paper is a formula for calculating the Seiberg-Witten invariants of 4-manifolds with fixed-point-free circle actions. This is done by showing under suitable conditions the existence of a diffeomorphism between the moduli space of the 4-manifold and the moduli space of the quotient 3-orbifold. Two corollaries include the fact that $b_+ {>} 1$ $4$-manifolds with fixed-point-free circle actions are simple type and a new proof of the equality $\mathcal{SW}_{Y^3\times S^1} = \mathcal{SW}_{Y^3}$. An infinite number of $4$-manifolds with $b_+=1$ whose Seiberg-Witten invariants are still diffeomorphism invariants is constructed and studied.


References [Enhancements On Off] (What's this?)

  • 1. S. Baldridge, Seiberg-Witten invariants of $4$-manifolds with free circle actions, Commun. Contemp. Math. 3 (2001), 341-353. MR 2002d:57024
  • 2. S. Donaldson, The Seiberg-Witten equations and 4-manifold topology, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 1, 45-70. MR 96k:57033
  • 3. R. Fintushel, Circle actions on simply connected $4$-manifolds, Trans. Amer. Math. Soc. 230 (1977), 147-171. MR 56:16659
  • 4. , Classification of circle actions on 4-manifolds, Trans. Amer. Math. Soc. 242 (1978), 377-390. MR 81e:57036
  • 5. M. Furuta and B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math., 96 (1992), no. 1, 38-102. MR 93m:57034
  • 6. W. Huck and V. Puppe, Circle actions on 4-manifolds II, Arch. Math. (Basel) 71 (1998), no. 6, 493-500. MR 99j:57040
  • 7. T. J. Li and A. Liu, General wall crossing formula, Math. Res. Lett. 2 (1995), no. 6, 797-810. MR 96m:57053
  • 8. J. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four manifolds, Princeton University Press, Princeton, 1996. MR 97d:57042
  • 9. G. Meng and C. Taubes, ${\underline{\rm SW}}=$ Milnor Torsion, Math. Res. Lett. 3 (1996), no. 5, 661-674. MR 98j:57049
  • 10. T. Mrowka, P. Ozsváth, and B. Yu, Seiberg-Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997), no. 4, 685 - 791. MR 98m:58017
  • 11. L. Nicolaescu, Notes on Seiberg-Witten Theory, Graduate Studies in Mathematics, 28, American Mathematical Society, Providence, RI, 2000. MR 2001k:57037
  • 12. P. Ozsváth and Z. Szabó, Higher type adjunction inequalities in Seiberg-Witten theory, J. Differential Geom. 55 (2000), 385-440. MR 2002j:57061
  • 13. , The symplectic Thom conjecture, Ann. of Math. (2) 151 (2000), no. 1, 93 - 124. MR 2001a:57049
  • 14. D. Rolfsen, Knots and Links, Publish or Perish, Inc., Houston, TX, 1990. MR 95c:57018
  • 15. I. Satake, The Gauss-Bonnet theorem for $V$-manifolds, J. Math. Soc. Japan 9 (1957), 464-492. MR 20:2022
  • 16. C. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809-822. MR 95j:57039
  • 17. E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769-796. MR 96d:57035

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57R57, 57M60, 55R35

Retrieve articles in all journals with MSC (2000): 57R57, 57M60, 55R35


Additional Information

Scott Jeremy Baldridge
Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Email: sbaldrid@indiana.edu

DOI: https://doi.org/10.1090/S0002-9947-02-03205-1
Keywords: Differential geometry, Seiberg-Witten invariants, circle actions, geometric topology
Received by editor(s): May 8, 2002
Received by editor(s) in revised form: September 6, 2002
Published electronically: December 6, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society