Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The stringy E-function of the moduli space of rank 2 bundles over a Riemann surface of genus 3


Author: Young-Hoon Kiem
Journal: Trans. Amer. Math. Soc. 355 (2003), 1843-1856
MSC (2000): Primary 14F05, 14F43, 14J10
DOI: https://doi.org/10.1090/S0002-9947-02-03125-2
Published electronically: December 2, 2002
MathSciNet review: 1953528
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the stringy E-function (or the motivic integral) of the moduli space of rank 2 bundles over a Riemann surface of genus 3. In doing so, we answer a question of Batyrev about the stringy E-functions of the GIT quotients of linear representations.


References [Enhancements On Off] (What's this?)

  • [AB] M. Atiyah and R. Bott.
    Yang-Mills equations over Riemann surfaces.
    Philos. Trans. Royal Soc. London A 308, 1982.
    Pages 523-615. MR 85k:14006
  • [Bat] V. Batyrev.
    Stringy Hodge numbers of varieties with Gorenstein canonical singularities.
    In Integrable systems and algebraic geometry (Kobe/Kyoto,1997), 1998.
    Pages 1-32. MR 2001a:14039
  • [Cra] A. Craw.
    An introduction to motivic integration.
    Preprint, math.AG/9911179.
  • [DL1] J. Denef and F. Loeser.
    Germs of arcs on singular varieties and motivic integration.
    Invent. Math. 135, no 1, 1999.
    Pages 201-232. MR 99k:14002
  • [DL2] J. Denef and F. Loeser.
    Motivic Igusa zeta functions.
    J. Algebraic Geometry 7, 1998.
    Pages 505-537. MR 99j:14021
  • [DN] J.-M. Drezet and M. Narasimhan.
    Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques.
    Invent. Math. 97, 1989.
    Pages 53-94. MR 90d:14008
  • [EK] R. Earl and F. Kirwan.
    The Hodge numbers of the moduli spaces of vector bundles over a Riemann surface.
    Quart. J. Math. 51 (2000), 465-483. MR 2001m:14018
  • [Hue] J. Huebschmann.
    Poisson Geometry of flat connections for SU(2)-bundles on surfaces.
    Math. Zeit. 221, 1996.
    Pages 243-259. MR 97f:58029
  • [Ki1] F. Kirwan.
    On the homology of compactifications of moduli spaces of vector bundles over a Riemann surface.
    Proc. London Math. Soc. 53, 1986.
    Pages 237-266. MR 88e:14012
  • [Ki2] F. Kirwan.
    On spaces of maps from Riemann surfaces to Grassmannians and applications to the cohomology of moduli spaces of vector bundles.
    Ark. Mat. 24, 1986.
    Pages 221-275. MR 88h:14014
  • [Ki3] F. Kirwan.
    Partial desingularizations of quotients of nonsingular varieties and their Betti numbers.
    Ann. Math. 122, 1985.
    Pages 41-85. MR 87a:14010
  • [Ki4] F. Kirwan.
    Cohomology of quotients in algebraic and symplectic geometry.
    Mathematical Notes 31.
    Princeton, 1985. MR 86i:58050
  • [Loo] E. Looijenga.
    Motivic measures.
    Sém. Bourbaki 1999/2000, Astérisque, No. 276 (2002), 267-297.
  • [New] P. Newstead.
    Introduction to moduli problems and orbit spaces.
    Tata Institute Lecture Note, 1978. MR 81k:14002
  • [Rei] M. Reid.
    Young person's guide to canonical singularities.
    In Algebraic Geometry Bowdoin.
    Vol.46, Proc. Sympos. Pure Math., American Mathematical Society, Providence, RI, 1987, pages 345-414. MR 89b:14016
  • [Ses] C. Seshadri.
    Fibrés vectoriels sur les courbes algébriques.
    Astérisque 96, (1982). MR 85b:14023
  • [Wey] H. Weyl.
    The classical groups.
    Princeton University Press, 1946. MR 98k:01049 (reprint)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14F05, 14F43, 14J10

Retrieve articles in all journals with MSC (2000): 14F05, 14F43, 14J10


Additional Information

Young-Hoon Kiem
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
Address at time of publication: Department of Mathematics, Seoul National University, San 56-1, Seoul 151-747, Korea
Email: kiem@math.stanford.edu

DOI: https://doi.org/10.1090/S0002-9947-02-03125-2
Received by editor(s): November 1, 2001
Published electronically: December 2, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society