Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Potential theory on Lipschitz domains in Riemannian manifolds: The case of Dini metric tensors


Authors: Marius Mitrea and Michael Taylor
Journal: Trans. Amer. Math. Soc. 355 (2003), 1961-1985
MSC (2000): Primary 31C12, 35J25, 45E05
DOI: https://doi.org/10.1090/S0002-9947-02-03150-1
Published electronically: November 14, 2002
MathSciNet review: 1953534
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the applicability of the method of layer potentials in the treatment of boundary value problems for the Laplace-Beltrami operator on Lipschitz sub-domains of Riemannian manifolds, in the case when the metric tensor $g_{jk} dx_j\otimes dx_k$ has low regularity. Under the assumption that

\begin{displaymath}\vert g_{jk}(x)-g_{jk}(y)\vert\leq C\,\omega(\vert x-y\vert),\end{displaymath}

where the modulus of continuity $\omega$ satisfies a Dini-type condition, we prove the well-posedness of the classical Dirichlet and Neumann problems with $L^p$ boundary data, for sharp ranges of $p$'s and with optimal nontangential maximal function estimates.


References [Enhancements On Off] (What's this?)

  • [Ca] A.P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. (USA) 74 (1977), 1324-1327. MR 57:6445
  • [CMM] R. Coifman, A. McIntosh, and Y. Meyer, L'intégrale de Cauchy definit un opérateur borné sur $L^2$ pour les courbes lipschitziennes, Ann. Math. 116 (1982), 361-388. MR 84m:42027
  • [DK] B. Dahlberg and C. Kenig, Hardy spaces and the Neumann problem in $L^p$ for Laplace's equation in Lipschitz domains, Ann. of Math. 125 (1987), 437-465. MR 88d:35044
  • [DiF] G. DiFazio, $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients, Boll. U.M.I. 10-A (1996), 409-420. MR 97e:35034
  • [Ed] R. E. Edwards, Functional Analysis. Theory and Applications, Corrected reprint of the 1965 original. Dover Publications, Inc., New York, 1995. MR 95k:46001
  • [FJR] E. Fabes, M. Jodeit, and N. Riviere, Potential techniques for boundary value problems in $C^1$ domains, Acta Math. 114 (1978), 165-186. MR 80b:31006
  • [GW] M. Grüter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscr. Math. 37 (1982), 303-342. MR 83h:35033
  • [JK] D. Jerison and C. Kenig, Boundary value problems in Lipschitz domains, pp. 1-68 in ``Studies in Partial Differential Equations,'' W. Littman, ed., MAA, 1982. MR 85f:35057
  • [KM] N. Kalton and M. Mitrea, Stability results on interpolation scales of quasi-Banach spaces and applications, Trans. Amer. Math. Soc. 350 (1998), 3903-3922. MR 98m:46094
  • [KP] C. Kenig and J. Pipher, The Neumann problem for elliptic equations with non-smooth coefficients, Invent. Math. 113 (1993), 447-509. MR 95b:35046
  • [Me] N.G.Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Annali della Scuola Norm. Sup. Pisa, III, 17 (1963), 189-206. MR 28:2328
  • [MT1] M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds, J. Funct. Anal. 163 (1999), 181-251. MR 2000b:35050
  • [MT2] M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: $L^p$, Hardy, and Hölder space results, Communications in Analysis and Geometry, 9 (2001), 369-421. MR 2002f:31012
  • [MT3] M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem, J. Funct. Anal. 176 (2000), 1-79. MR 2002e:58044
  • [MT4] M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: Hölder continuous metric tensors, Comm. PDE 25 (2000), 1487-1536. MR 2001h:35040
  • [P] J. Peetre, On convolution operators leaving $L^{p\lambda}$-spaces invariant, Ann. Mat. Pura Appl. 72 (1966), 295-304. MR 35:812
  • [Sp] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa 19 (1965), 593-608. MR 32:8140
  • [T1] M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991. MR 92j:35193
  • [T2] M. Taylor, Microlocal analysis on Morrey spaces, in Singularities and Oscillations (J. Rauch and M. Taylor, eds.), IMA Vol. 91, Springer-Verlag, New York, 1997, pp. 97-135. MR 99a:35010
  • [T3] M. Taylor, Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, 81, Amer. Math. Soc., Providence, RI, 2000. MR 2001g:35004
  • [Ve] G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), 572-611. MR 86e:35038

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 31C12, 35J25, 45E05

Retrieve articles in all journals with MSC (2000): 31C12, 35J25, 45E05


Additional Information

Marius Mitrea
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: marius@math.missouri.edu

Michael Taylor
Affiliation: Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599
Email: met@math.unc.edu

DOI: https://doi.org/10.1090/S0002-9947-02-03150-1
Received by editor(s): April 24, 2002
Received by editor(s) in revised form: July 4, 2002
Published electronically: November 14, 2002
Additional Notes: The first author was partially supported by NSF grants DMS-9870018 and DMS-0139801
The second author was partially supported by NSF grant DMS-9877077
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society