Mappings of finite distortion: The sharp modulus of continuity

Authors:
Pekka Koskela and Jani Onninen

Journal:
Trans. Amer. Math. Soc. **355** (2003), 1905-1920

MSC (2000):
Primary 30C65

DOI:
https://doi.org/10.1090/S0002-9947-03-03090-3

Published electronically:
January 10, 2003

MathSciNet review:
1953531

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish an essentially sharp modulus of continuity for mappings of subexponentially integrable distortion.

**1.**David, G. (1988). Solutions de l'équation de Beltrami avec . (French) [Solutions of the Beltrami equation with ] Ann. Acad. Sci. Fenn. Ser. A I Math. 13, no. 1, 25-70. MR**90d:30058****2.**Giannetti, F., Iwaniec, T., Onninen, J., and Verde, A. (2002). -Estimates of Jacobians by subdeterminants. J. Geom. Anal. 12, no. 2, 223-254.**3.**Greco, L. (1998). Sharp integrability of nonnegative Jacobians. Rend. Mat. Appl. (7) 18, no. 3, 585-600. MR**2000g:42024****4.**Greco, L., Iwaniec, T. and Moscariello, G. (1995). Limits of the improved integrability of the volume forms. Indiana Univ. Math. J. 44, no. 2, 305-339. MR**96k:46051****5.**Hencl, S. and Malý, J., Mappings of finite distortion: Hausdorff measure of zero sets. Preprint. Charles University, 2001.**6.**Iwaniec, T., Koskela, P., Martin, G. J. and Sbordone, C., Mappings of finite distortion: -integrability. Preprint 246, Department of Mathematics and Statistics, University of Jyväskylä, 2001.**7.**Iwaniec, T., Koskela, P. and Onninen, J. (2001). Mappings of finite distortion: Monotonicity and continuity. Inventiones Mathematicae 144, no. 3, 507-531. MR**2002c:30029****8.**Iwaniec, T., Koskela, P. and Onninen, J. (2002). Mappings of finite distortion: Compactness. Ann. Acad. Sci. Fenn. Math. 27, no. 2, 391-417.**9.**Iwaniec, T. and Martin, G. J., The Beltrami equation, Mem. Amer. Math. Soc., to appear.**10.**Iwaniec, T. and Martin, G. J. (2001). Geometric function theory and non-linear analysis. Oxford Mathematical Monographs.**11.**Iwaniec, T. and Sbordone, C. (1992). On the integrability of the Jacobian under minimal hypotheses. Arch. Rational Mech. Anal. 119, no. 2, 129-143. MR**93i:49057****12.**Kauhanen, J., Koskela, P. and Malý, J. (2001). Mappings of finite distortion: Discreteness and openness. Arch. Rational Mech. Anal. 160, 135-151.**13.**Kauhanen, J., Koskela, P. and Malý, J. (2001). Mappings of finite distortion: Condition N. Michigan Math. J. 49, no. 1, 169-181. MR**2002d:30027****14.**Kauhanen, J., Koskela, P., Malý, J., Onninen, J. and Zhong, X., Mappings of finite distortion: Sharp Orlicz-conditions. Rev. Mat. Iberoamericana, to appear.**15.**Koskela, P. and Malý, J., Mappings of finite distortion: The zero set of the Jacobian. Preprint 241, Department of Mathematics and Statistics, University of Jyväskylä, 2001.**16.**Morrey, C. B. (1938). On the solutions of quasilinear elliptic partial differential equations, Trans. Amer. Math. Soc., 43, 126-166.**17.**Onninen, J., A note on the isoperimetric inequality. Proc. Amer. Math. Soc., to appear.**18.**Reshetnyak, Yu. G. (1967). Spatial mappings with bounded distortion. Sibirsk. Mat. Zh., 8, 629-659; English transl. in Siberian Math. J. 8 (1967). MR**35:6825**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
30C65

Retrieve articles in all journals with MSC (2000): 30C65

Additional Information

**Pekka Koskela**

Affiliation:
University of Jyväskylä, Department of Mathematics and Statistics, P.O. Box 35, Fin-40351 Jyväskylä, Finland

Email:
pkoskela@maths.jyu.fi

**Jani Onninen**

Affiliation:
University of Jyväskylä, Department of Mathematics and Statistics, P.O. Box 35, Fin-40351 Jyväskylä, Finland

Email:
jaonnine@maths.jyu.fi

DOI:
https://doi.org/10.1090/S0002-9947-03-03090-3

Received by editor(s):
January 25, 2002

Published electronically:
January 10, 2003

Additional Notes:
The authors were supported in part by the Academy of Finland, project 39788. The second author was also supported by the foundations Magnus Ehrnroothin Säätiö and Vilho, Yrjö ja Kalle Väisälän Rahasto. This research was completed when the authors were visiting at the University of Michigan, Pekka Koskela as the Fred and Lois Gehring professor. They wish to thank the Institute for the hospitality

Article copyright:
© Copyright 2003
American Mathematical Society