Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Functorial Hodge identities and quantization


Author: M. J. Slupinski
Journal: Trans. Amer. Math. Soc. 355 (2003), 2011-2046
MSC (2000): Primary 22E99, 53C50, 53C55, 53C99
Published electronically: January 10, 2003
MathSciNet review: 1953536
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By a uniform abstract procedure, we obtain integrated forms of the classical Hodge identities for Riemannian, Kähler and hyper-Kähler manifolds, as well as of the analogous identities for metrics of arbitrary signature. These identities depend only on the type of geometry and, for each of the three types of geometry, define a multiplicative functor from the corresponding category of real, graded, flat vector bundles to the category of infinite-dimensional $\mathbf{Z}_{2}$-projective representations of an algebraic structure. We define new multiplicative numerical invariants of closed Kähler and hyper-Kähler manifolds which are invariant under deformations of the metric.


References [Enhancements On Off] (What's this?)

  • [ABS] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl. 1, 3–38. MR 0167985
  • [B] Bernstein, J. -- Lectures on SUSY (notes by P. Deligne and J. Morgan) in `Quantum Fields and Strings: a course for mathematicians', Vol 1 (ed P. Deligne et al) - American Mathematical Society, Providence, RI, 1999.
  • [BdR] Pierre Bidal and Georges de Rham, Les formes différentielles harmoniques, Comment. Math. Helv. 19 (1946), 1–49 (French). MR 0016974
  • [FKS] J. M. Figueroa-O’Farrill, C. Köhl, and B. Spence, Supersymmetry and the cohomology of (hyper)Kähler manifolds, Nuclear Phys. B 503 (1997), no. 3, 614–626. MR 1482737, 10.1016/S0550-3213(97)00548-8
  • [H] W. V. D. Hodge, The Theory and Applications of Harmonic Integrals, Cambridge University Press, Cambridge, England; Macmillan Company, New York, 1941. MR 0003947
    W. V. D. Hodge, The theory and applications of harmonic integrals, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1989. Reprint of the 1941 original; With a foreword by Michael Atiyah. MR 1015714
  • [Ho] Roger Howe, Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons, Applications of group theory in physics and mathematical physics (Chicago, 1982) Lectures in Appl. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1985, pp. 179–207. MR 789290
  • [K] Kunihiko Kodaira, Über die Harmonischen Tensorfelder in Riemannschen Mannigfaltigkeiten. I, Proc. Imp. Acad. Tokyo 20 (1944), 186–198 (German). MR 0014763
  • [P] Richard S. Palais, Seminar on the Atiyah-Singer index theorem, With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. MR 0198494
  • [S] M. J. Slupinski, Dual pairs in 𝑃𝑖𝑛(𝑝,𝑞) and Howe correspondences for the spin representation, J. Algebra 202 (1998), no. 2, 512–540. MR 1617612, 10.1006/jabr.1997.7279
  • [Sch] Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063
  • [V] M. S. Verbitskiĭ, Action of the Lie algebra of 𝑆𝑂(5) on the cohomology of a hyper-Kähler manifold, Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 70–71 (Russian); English transl., Funct. Anal. Appl. 24 (1990), no. 3, 229–230 (1991). MR 1082036, 10.1007/BF01077967
  • [W1] André Weil, Sur la théorie des formes différentielles attachées à une variété analytique complexe, Comment. Math. Helv. 20 (1947), 110–116 (French). MR 0021431
  • [W2] Weil, A. -- Variétés Kählériennes. - Hermann, Paris, 1958.
  • [Wi] Edward Witten, Homework, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 609–717. MR 1701609

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 22E99, 53C50, 53C55, 53C99

Retrieve articles in all journals with MSC (2000): 22E99, 53C50, 53C55, 53C99


Additional Information

M. J. Slupinski
Affiliation: Université de Louis Pasteur et CNRS (URA 01), 7 rue René Descartes, 67084 Strasbourg Cedex, France
Email: slupins@math.u-strasbg.fr

DOI: https://doi.org/10.1090/S0002-9947-03-03208-2
Received by editor(s): April 17, 2002
Received by editor(s) in revised form: July 2, 2002
Published electronically: January 10, 2003
Article copyright: © Copyright 2003 American Mathematical Society