Steenrod operations in Chow theory
Author:
Patrick Brosnan
Journal:
Trans. Amer. Math. Soc. 355 (2003), 18691903
MSC (2000):
Primary 14C25; Secondary 55N91
Published electronically:
January 10, 2003
MathSciNet review:
1953530
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An action of the Steenrod algebra is constructed on the mod Chow theory of varieties over a field of characteristic different from , answering a question posed in Fulton's Intersection Theory. The action agrees with the action of the Steenrod algebra used by Voevodsky in his proof of the Milnor conjecture. However, the construction uses only basic functorial properties of equivariant intersection theory.
 1.
M.
Artin, Versal deformations and algebraic stacks, Invent. Math.
27 (1974), 165–189. MR 0399094
(53 #2945)
 2.
P.
Deligne and D.
Mumford, The irreducibility of the space of curves of given
genus, Inst. Hautes Études Sci. Publ. Math. 36
(1969), 75–109. MR 0262240
(41 #6850)
 3.
Dan
Edidin and William
Graham, Equivariant intersection theory, Invent. Math.
131 (1998), no. 3, 595–634. MR 1614555
(99j:14003a), http://dx.doi.org/10.1007/s002220050214
 4.
William
Fulton, Intersection theory, 2nd ed., Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series
of Modern Surveys in Mathematics], vol. 2, SpringerVerlag, Berlin,
1998. MR
1644323 (99d:14003)
 5.
Henri
Gillet, Intersection theory on algebraic stacks and
𝑄varieties, Proceedings of the Luminy conference on algebraic
𝐾theory (Luminy, 1983), 1984, pp. 193–240. MR 772058
(86b:14006), http://dx.doi.org/10.1016/00224049(84)900367
 6.
S.
Kawai, A note on Steenrod reduced powers of algebraic
cocycles, Complex analysis and algebraic geometry, Iwanami Shoten,
Tokyo, 1977, pp. 375–381. MR 0450266
(56 #8562)
 7.
John
W. Milnor and James
D. Stasheff, Characteristic classes, Princeton University
Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of
Mathematics Studies, No. 76. MR 0440554
(55 #13428)
 8.
N.
E. Steenrod, Cohomology operations, Lectures by N. E. STeenrod
written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No.
50, Princeton University Press, Princeton, N.J., 1962. MR 0145525
(26 #3056)
 9.
Burt
Totaro, The Chow ring of a classifying space, Algebraic
𝐾theory (Seattle, WA, 1997) Proc. Sympos. Pure Math.,
vol. 67, Amer. Math. Soc., Providence, RI, 1999,
pp. 249–281. MR 1743244
(2001f:14011), http://dx.doi.org/10.1090/pspum/067/1743244
 10.
V. Voevodsky.
The Milnor conjecture. Ktheory preprint server.
 11.
Vladimir Voevodsky.
Reduced power operations in motivic cohomology. arXiv:math. AG/0107109.
 1.
 M. Artin.
Versal deformations and algebraic stacks. Invent. Math., 27:165189, 1974. MR 53:2945
 2.
 P. Deligne and D. Mumford.
The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math., (36):75109, 1969. MR 41:6850
 3.
 Dan Edidin and William Graham.
Equivariant intersection theory. Invent. Math., 131(3):595634, 1998. MR 99j:14003a
 4.
 William Fulton.
Intersection theory. SpringerVerlag, Berlin, second edition, 1998. MR 99d:14003
 5.
 Henri Gillet.
Intersection theory on algebraic stacks and varieties. In Proceedings of the Luminy conference on algebraic theory (Luminy, 1983), volume 34, pages 193240, 1984. MR 86b:14006
 6.
 S. Kawai.
A note on Steenrod reduced powers of algebraic cocycles. In Complex analysis and algebraic geometry, pages 375381. Iwanami Shoten, Tokyo, 1977. MR 56:8562
 7.
 John W. Milnor and James D. Stasheff.
Characteristic classes. Princeton University Press, Princeton, NJ, 1974. Annals of Mathematics Studies, No. 76. MR 55:13428
 8.
 N. E. Steenrod.
Cohomology operations. Princeton University Press, Princeton, NJ, 1962. MR 26:3056
 9.
 Burt Totaro.
The Chow ring of a classifying space. In Algebraic theory (Seattle, WA, 1997), Proc. Sympos. Pure Math., vol. 67, pages 249281. Amer. Math. Soc., Providence, RI, 1999. MR 2001f:14011
 10.
 V. Voevodsky.
The Milnor conjecture. Ktheory preprint server.
 11.
 Vladimir Voevodsky.
Reduced power operations in motivic cohomology. arXiv:math. AG/0107109.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
14C25,
55N91
Retrieve articles in all journals
with MSC (2000):
14C25,
55N91
Additional Information
Patrick Brosnan
Affiliation:
Department of Mathematics, University of California, Los Angeles, California
Email:
pbrosnan@math.ucla.edu
DOI:
http://dx.doi.org/10.1090/S0002994703032240
PII:
S 00029947(03)032240
Received by editor(s):
January 10, 2000
Received by editor(s) in revised form:
September 15, 2000
Published electronically:
January 10, 2003
Article copyright:
© Copyright 2003
American Mathematical Society
