Central Kähler metrics with non-constant central curvature

Authors:
Andrew D. Hwang and Gideon Maschler

Journal:
Trans. Amer. Math. Soc. **355** (2003), 2183-2203

MSC (2000):
Primary 53C55, 53C25

DOI:
https://doi.org/10.1090/S0002-9947-03-03158-1

Published electronically:
January 31, 2003

MathSciNet review:
1973987

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The *central curvature* of a Riemannian metric is the determinant of its Ricci endomorphism, while the scalar curvature is its trace. A Kähler metric is called *central* if the gradient of its central curvature is a holomorphic vector field. Such metrics may be viewed as analogs of the extremal Kähler metrics defined by Calabi. In this work, central metrics of non-constant central curvature are constructed on various ruled surfaces, most notably the first Hirzebruch surface. This is achieved via the momentum construction of Hwang and Singer, a variant of an ansatz employed by Calabi (1979) and by Koiso and Sakane (1986). Non-existence, real-analyticity and positivity properties of central metrics arising in this ansatz are also established.

**[C0]**E. Calabi,*Métriques kählériennes et fibrés holomorphes*, Ann. Sci. École Norm. Sup. (4)**12**(1979), no. 2, 269–294 (French). MR**543218****[C1]**Eugenio Calabi,*Extremal Kähler metrics*, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 259–290. MR**645743****[C2]**Eugenio Calabi,*Extremal Kähler metrics. II*, Differential geometry and complex analysis, Springer, Berlin, 1985, pp. 95–114. MR**780039****[Dr]**Andrzej Derdziński,*Self-dual Kähler manifolds and Einstein manifolds of dimension four*, Compositio Math.**49**(1983), no. 3, 405–433. MR**707181****[FMS]**A. Futaki, T. Mabuchi, and Y. Sakane,*Einstein-Kähler metrics with positive Ricci curvature*, Kähler metric and moduli spaces, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 11–83. MR**1145246****[G]**Daniel Guan,*Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends*, Trans. Amer. Math. Soc.**347**(1995), no. 6, 2255–2262. MR**1285992**, https://doi.org/10.1090/S0002-9947-1995-1285992-6**[H]**Andrew D. Hwang,*On existence of Kähler metrics with constant scalar curvature*, Osaka J. Math.**31**(1994), no. 3, 561–595. MR**1309403****[HSm1]**Andrew D. Hwang and Santiago R. Simanca,*Distinguished Kähler metrics on Hirzebruch surfaces*, Trans. Amer. Math. Soc.**347**(1995), no. 3, 1013–1021. MR**1246528**, https://doi.org/10.1090/S0002-9947-1995-1246528-9**[HSm2]**Andrew D. Hwang and Santiago R. Simanca,*Extremal Kähler metrics on Hirzebruch surfaces which are locally conformally equivalent to Einstein metrics*, Math. Ann.**309**(1997), no. 1, 97–106. MR**1467648**, https://doi.org/10.1007/s002080050104**[HSn]**A. D. Hwang and M. Singer,*A momentum construction for circle-invariant Kähler metrics,*Trans. Amer. Math. Soc. 354 (2002), 2285-2325.**[Ki]**Norihito Koiso,*On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics*, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 327–337. MR**1145263****[KS1]**Norihito Koiso and Yusuke Sakane,*Nonhomogeneous Kähler-Einstein metrics on compact complex manifolds*, Curvature and topology of Riemannian manifolds (Katata, 1985) Lecture Notes in Math., vol. 1201, Springer, Berlin, 1986, pp. 165–179. MR**859583**, https://doi.org/10.1007/BFb0075654**[KS2]**Norihito Koiso and Yusuke Sakane,*Nonhomogeneous Kähler-Einstein metrics on compact complex manifolds. II*, Osaka J. Math.**25**(1988), no. 4, 933–959. MR**983813****[Le]**Claude LeBrun,*Einstein metrics on complex surfaces*, Geometry and physics (Aarhus, 1995) Lecture Notes in Pure and Appl. Math., vol. 184, Dekker, New York, 1997, pp. 167–176. MR**1423163****[LSn]**Claude LeBrun and Michael Singer,*Existence and deformation theory for scalar-flat Kähler metrics on compact complex surfaces*, Invent. Math.**112**(1993), no. 2, 273–313. MR**1213104**, https://doi.org/10.1007/BF01232436**[Mb]**Toshiki Mabuchi,*Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties*, Osaka J. Math.**24**(1987), no. 4, 705–737. MR**927057****[Ms1]**G. Maschler,*Distinguished Kähler metrics and Equivariant Cohomological Invariants,*thesis, State University of New York at Stony Brook, August 1997.**[Ms2]**G. Maschler,*Central Kähler metrics,*Trans. Amer. Math. Soc. 355 (2003), 2161-2182.**[PP]**Henrik Pedersen and Y. Sun Poon,*Hamiltonian constructions of Kähler-Einstein metrics and Kähler metrics of constant scalar curvature*, Comm. Math. Phys.**136**(1991), no. 2, 309–326. MR**1096118****[Sk]**Yusuke Sakane,*Examples of compact Einstein Kähler manifolds with positive Ricci tensor*, Osaka J. Math.**23**(1986), no. 3, 585–616. MR**866267****[Sm]**Santiago R. Simanca,*A note on extremal metrics of nonconstant scalar curvature*, Israel J. Math.**78**(1992), no. 1, 85–93. MR**1194961**, https://doi.org/10.1007/BF02801573**[Tf]**Christina Wiis Tønnesen-Friedman,*Extremal Kähler metrics on minimal ruled surfaces*, J. Reine Angew. Math.**502**(1998), 175–197. MR**1647571**, https://doi.org/10.1515/crll.1998.086

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53C55,
53C25

Retrieve articles in all journals with MSC (2000): 53C55, 53C25

Additional Information

**Andrew D. Hwang**

Affiliation:
Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, Massachusetts 01610

Email:
ahwang@mathcs.holycross.edu

**Gideon Maschler**

Affiliation:
Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3

Email:
maschler@math.toronto.edu

DOI:
https://doi.org/10.1090/S0002-9947-03-03158-1

Received by editor(s):
November 1, 1999

Published electronically:
January 31, 2003

Additional Notes:
The first author was supported in part by an NSERC Canada individual research grant.

The second author was partially supported by the Edmund Landau Center for research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany)

Article copyright:
© Copyright 2003
American Mathematical Society