Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Fixed points of commuting holomorphic mappings other than the Wolff point


Author: Filippo Bracci
Journal: Trans. Amer. Math. Soc. 355 (2003), 2569-2584
MSC (2000): Primary 30D05; Secondary 30C80, 30E25, 47B33
DOI: https://doi.org/10.1090/S0002-9947-03-03170-2
Published electronically: January 29, 2003
MathSciNet review: 1974004
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Delta$ be the unit disc of $\mathbb C$ and let $f,g \in \mathrm{Hol}(\Delta,\Delta)$ be such that $f \circ g = g \circ f$. For $A>1$, let $\mathrm{Fix}_A (f):=\{p \in \partial\Delta \mid \lim_{r \to 1}f(rp)=p, \lim_{r \to 1}\vert f'(rp)\vert\leq A \}$. We study the behavior of $g$ on $\mathrm{Fix}_A (f)$. In particular, we prove that $g(\mathrm{Fix}_A (f))\subseteq \mathrm{Fix}_A (f)$. As a consequence, besides conditions for $\mathrm{Fix}_A(f) \cap \mathrm{Fix}_A(g) \neq \emptyset$, we prove a conjecture of C. Cowen in case $f$ and $g$ are univalent mappings.


References [Enhancements On Off] (What's this?)

  • [Ab] M. Abate, Iteration theory of holomorphic maps on taut manifolds. Mediterranean Press, Rende, Italy 1989. MR 92i:32032
  • [Be] D.F. Behan, Commuting analytic functions without fixed points. Proc. Amer. Math. Soc. 37 (1973), 114-120. MR 46:7492
  • [Br1] F. Bracci, Common fixed points of commuting holomorphic maps in the unit ball of $\mbox{${\mathbb C}$ }^n$. Proc. Amer. Math. Soc. 127, 4, (1999), 1133-1141. MR 99f:32034
  • [Br2] F. Bracci, Fixed points of commuting holomorphic maps without boundary regularity. Canad. Math. Bull. 43, 3, (2000), 294-303. MR 2001g:32039
  • [ChMo] I. Chalendar and R. Mortini, When do finite Blaschke products commute?. Bull. Australian Math. Soc., 64 (2001), 189-200. MR 2002i:30039
  • [Co1] C. C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk. Trans. Amer. Math. Soc. 265 (1981), 69-95. MR 82i:30036
  • [Co2] C.C. Cowen, Commuting analytic functions. Trans. Amer. Math. Soc. 283,2, (1984), 685-695. MR 85i:30054
  • [CoPo] C.C. Cowen - Ch. Pommerenke, Inequalities for the angular derivative of an analytic function in the unit disk. J. London Math. Soc. (2), 26 (1982), 271- 289. MR 84a:30006
  • [Go] G. M. Goluzin, Geometric theory of functions of a complex variable. Transl. of Math. Monographs, 26, Amer. Math. Soc. 1969. MR 40:308
  • [PC1] P. Poggi Corradini, Angular derivatives at boundary fixed points for self-maps of the disk. Proc. Amer. Math. Soc. 126, 6, (1998), 1697-1708. MR 98g:30049
  • [PC2] P. Poggi Corradini, Canonical conjugations at fixed points other than the Denjoy-Wolff point. Ann. Acad. Sci. Fenn. Math. 25 (2000), 2, 487-499. MR 2001f:30033
  • [PC3] P. Poggi Corradini, Backward sequences with bounded hyperbolic steps for analytic self-maps of the disk. Revista Matematica Iberoamericana, to appear.
  • [Po] C. Pommerenke, Boundary behaviour of conformal maps. Springer-Verlag, New York, 1992. MR 95b:30008
  • [Sha] J.H. Shapiro, Composition operators and classical function theory. Springer-Verlag, New York, 1993. MR 94k:47049
  • [Shi] A. L. Shields, On fixed points of commuting analytic functions. Proc. Amer. Math. Soc. 15 (1964), 703-706. MR 29:2790

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 30D05, 30C80, 30E25, 47B33

Retrieve articles in all journals with MSC (2000): 30D05, 30C80, 30E25, 47B33


Additional Information

Filippo Bracci
Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy
Email: fbracci@mat.uniroma2.it

DOI: https://doi.org/10.1090/S0002-9947-03-03170-2
Keywords: Fixed points; Wolff point; commuting mappings
Received by editor(s): April 1, 2001
Published electronically: January 29, 2003
Additional Notes: Partially supported by Progetto MURST di Rilevante Interesse Nazionale Proprietà geometriche delle varietà reali e complesse and GNSAGA
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society