Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On Ginzburg’s bivariant Chern classes
HTML articles powered by AMS MathViewer

by Shoji Yokura PDF
Trans. Amer. Math. Soc. 355 (2003), 2501-2521 Request permission

Abstract:

The convolution product is an important tool in geometric representation theory. Ginzburg constructed the “bivariant" Chern class operation from a certain convolution algebra of Lagrangian cycles to the convolution algebra of Borel-Moore homology. In this paper we prove a “constructible function version" of one of Ginzburg’s results; motivated by its proof, we introduce another bivariant algebraic homology theory $s\mathbb {AH}$ on smooth morphisms of nonsingular varieties and show that the Ginzburg bivariant Chern class is the unique Grothendieck transformation from the Fulton-MacPherson bivariant theory of constructible functions to this new bivariant algebraic homology theory, modulo a reasonable conjecture. Furthermore, taking a hint from this conjecture, we introduce another bivariant theory $\mathbb {GF}$ of constructible functions, and we show that the Ginzburg bivariant Chern class is the unique Grothendieck transformation from $\mathbb {GF}$ to $s\mathbb {AH}$ satisfying the “normalization condition" and that it becomes the Chern-Schwartz-MacPherson class when restricted to the morphisms to a point.
References
  • Jean-Paul Brasselet, Existence des classes de Chern en théorie bivariante, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 7–22 (French). MR 737926
  • J.-P. Brasselet and M.-H. Schwartz, Sur les classes de Chern d’un ensemble analytique complexe, The Euler-Poincaré characteristic (French), Astérisque, vol. 82, Soc. Math. France, Paris, 1981, pp. 93–147 (French). MR 629125
  • Jean-Paul Brasselet and Shoji Yokura, Remarks on bivariant constructible functions, Singularities—Sapporo 1998, Adv. Stud. Pure Math., vol. 29, Kinokuniya, Tokyo, 2000, pp. 53–77. MR 1819630, DOI 10.2969/aspm/02910053
  • Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
  • William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
  • William Fulton and Robert MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165. MR 609831, DOI 10.1090/memo/0243
  • V. Ginsburg, ${\mathfrak {G}}$-modules, Springer’s representations and bivariant Chern classes, Adv. in Math. 61 (1986), no. 1, 1–48. MR 847727, DOI 10.1016/0001-8708(86)90064-2
  • Victor Ginzburg, Geometric methods in the representation theory of Hecke algebras and quantum groups, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 127–183. Notes by Vladimir Baranovsky [V. Yu. Baranovskiĭ]. MR 1649626
  • MichałKwieciński, Formule du produit pour les classes caractéristiques de Chern-Schwartz-MacPherson et homologie d’intersection, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 8, 625–628 (French, with English summary). MR 1158750
  • MichałKwieciński and Shoji Yokura, Product formula for twisted MacPherson classes, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 7, 167–171. MR 1193174
  • R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 361141, DOI 10.2307/1971080
  • Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no. 2, 365–416. MR 1302318, DOI 10.1215/S0012-7094-94-07613-8
  • Hiraku Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. (2) 145 (1997), no. 2, 379–388. MR 1441880, DOI 10.2307/2951818
  • Hiraku Nakajima, Quiver varieties and quantum affine rings, Sūgaku 52 (2000), no. 4, 337–359 (Japanese). MR 1802956
  • Hiraku Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145–238. MR 1808477, DOI 10.1090/S0894-0347-00-00353-2
  • C. Sabbah, Espaces conormaux bivariants, Thèse, l’Université Paris VII (1986).
  • J. Schürmann, Some remarks on characteristic classes of Lagrangian cycles, preprint (2000).
  • —, A generalized Verdier-type Riemann-Roch theorem for Chern-Schwartz-MacPherson classes, Math. AG/0202175.
  • —, A general construction of partial Grothendieck transformations, Math. AG/0209299.
  • Louis Weisner, Condition that a finite group be multiply isomorphic with each of its irreducible representations, Amer. J. Math. 61 (1939), 709–712. MR 32, DOI 10.2307/2371325
  • M.-H. Schwartz, Classes et caractères de Chern des espaces linéaires, Publ. U.E.R. Math. Pures Appl. IRMA 2 (1980), no. 3, exp. no. 3, 41 (French). MR 618094
  • Shoji Yokura, On a Verdier-type Riemann-Roch for Chern-Schwartz-MacPherson class, Topology Appl. 94 (1999), no. 1-3, 315–327. Special issue in memory of B. J. Ball. MR 1695362, DOI 10.1016/S0166-8641(98)00037-6
  • —, Bivariant theories of constructible functions and Grothendieck transformations, Topology and Its Applications 123 (2002), 283–296.
  • —, Verdier-Riemann-Roch for Chern class and Milnor class, Asian J. of Math. 6 (2002), 1–22.
  • —, Remarks on Ginzburg’s bivariant Chern classes, Proc. Amer. Math. Soc. 130 (2002), 3465–3471.
  • —, On the uniqueness problem of the bivariant Chern classes, Documenta Mathematica 7 (2002), 133–142.
  • —, On Ginzburg’s bivariant Chern classes, II, Geometriae Dedicata (to appear).
  • —, Semi-bivariant Chern classes, preprint (2002).
  • J. Zhou, Classes de Chern en théorie bivariante, in Thèse, Université Aix-Marseille II (1995).
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14C17, 14F99, 55N35
  • Retrieve articles in all journals with MSC (2000): 14C17, 14F99, 55N35
Additional Information
  • Shoji Yokura
  • Affiliation: Department of Mathematics and Computer Science, Faculty of Science, University of Kagoshima, 21-35 Korimoto 1-chome, Kagoshima 890-0065, Japan
  • Email: yokura@sci.kagoshima-u.ac.jp
  • Received by editor(s): January 20, 2002
  • Published electronically: February 6, 2003
  • Additional Notes: The author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 12640081), the Japanese Ministry of Education, Science, Sports and Culture
  • © Copyright 2003 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 355 (2003), 2501-2521
  • MSC (2000): Primary 14C17, 14F99, 55N35
  • DOI: https://doi.org/10.1090/S0002-9947-03-03252-5
  • MathSciNet review: 1974000