Integration by parts formulas involving generalized Fourier-Feynman transforms on function space

Authors:
Seung Jun Chang, Jae Gil Choi and David Skoug

Journal:
Trans. Amer. Math. Soc. **355** (2003), 2925-2948

MSC (2000):
Primary 60J65, 28C20

Published electronically:
February 25, 2003

MathSciNet review:
1975406

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In an upcoming paper, Chang and Skoug used a generalized Brownian motion process to define a generalized analytic Feynman integral and a generalized analytic Fourier-Feynman transform. In this paper we establish several integration by parts formulas involving generalized Feynman integrals, generalized Fourier-Feynman transforms, and the first variation of functionals of the form where denotes the Paley-Wiener-Zygmund stochastic integral .

**[1]**R. H. Cameron and D. A. Storvick,*An 𝐿₂ analytic Fourier-Feynman transform*, Michigan Math. J.**23**(1976), no. 1, 1–30. MR**0404571****[2]**R. H. Cameron and D. A. Storvick,*Feynman integral of variations of functionals*, Gaussian random fields (Nagoya, 1990) Ser. Probab. Statist., vol. 1, World Sci. Publ., River Edge, NJ, 1991, pp. 144–157. MR**1163606****[3]**K. S. Chang, B. S. Kim, and I. Yoo,*Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space*, Integral Transform. Spec. Funct.**10**(2000), no. 3-4, 179–200. Analytical methods of analysis and differential equations (Minsk, 1999). MR**1811008**, 10.1080/10652460008819285**[4]**S. J. Chang and D. L. Skoug,*The effect of drift on the Fourier-Feynman transform, the convolution product and the first variation*, Panamerican Math. J.**10**(2000), 25-38.**[5]**-,*Generalized Fourier-Feynman transforms and a first variation on function space*, to appear in Integral Transforms and Special Functions.**[6]**Timothy Huffman, Chull Park, and David Skoug,*Analytic Fourier-Feynman transforms and convolution*, Trans. Amer. Math. Soc.**347**(1995), no. 2, 661–673. MR**1242088**, 10.1090/S0002-9947-1995-1242088-7**[7]**Timothy Huffman, Chull Park, and David Skoug,*Generalized transforms and convolutions*, Internat. J. Math. Math. Sci.**20**(1997), no. 1, 19–32. MR**1431419**, 10.1155/S0161171297000045**[8]**G. W. Johnson and D. L. Skoug,*An 𝐿_{𝑝} analytic Fourier-Feynman transform*, Michigan Math. J.**26**(1979), no. 1, 103–127. MR**514964****[9]**G. W. Johnson and D. L. Skoug,*Scale-invariant measurability in Wiener space*, Pacific J. Math.**83**(1979), no. 1, 157–176. MR**555044****[10]**Edward Nelson,*Dynamical theories of Brownian motion*, Princeton University Press, Princeton, N.J., 1967. MR**0214150****[11]**Chull Park and David Skoug,*Integration by parts formulas involving analytic Feynman integrals*, Panamer. Math. J.**8**(1998), no. 4, 1–11. MR**1657442****[12]**H. L. Royden,*Real analysis*, 3rd ed., Macmillan Publishing Company, New York, 1988. MR**1013117****[13]**J. Yeh,*Stochastic processes and the Wiener integral*, Marcel Dekker,#Inc., New York, 1973. Pure and Applied Mathematics, Vol. 13. MR**0474528**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
60J65,
28C20

Retrieve articles in all journals with MSC (2000): 60J65, 28C20

Additional Information

**Seung Jun Chang**

Affiliation:
Department of Mathematics, Dankook University, Cheonan 330-714, Korea

Email:
sejchang@dankook.ac.kr

**Jae Gil Choi**

Affiliation:
Department of Mathematics, Dankook University, Cheonan 330-714, Korea

Email:
jgchoi@dankook.ac.kr

**David Skoug**

Affiliation:
Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska, 68588-0323

Email:
dskoug@math.unl.edu

DOI:
http://dx.doi.org/10.1090/S0002-9947-03-03256-2

Keywords:
Generalized Brownian motion process,
generalized analytic Feynman integral,
generalized analytic Fourier-Feynman transform,
first variation,
Cameron-Storvick type theorem

Received by editor(s):
September 6, 2002

Received by editor(s) in revised form:
November 15, 2002

Published electronically:
February 25, 2003

Additional Notes:
The present research was conducted by the research fund of Dankook University in 2000

Article copyright:
© Copyright 2003
American Mathematical Society