Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Formality in an equivariant setting

Author: Steven Lillywhite
Journal: Trans. Amer. Math. Soc. 355 (2003), 2771-2793
MSC (2000): Primary 55P62; Secondary 55N91, 18G55, 57T30
Published electronically: February 25, 2003
MathSciNet review: 1975399
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define and discuss $G$-formality for certain spaces endowed with an action by a compact Lie group. This concept is essentially formality of the Borel construction of the space in a category of commutative differential graded algebras over $R=H^\bullet(BG)$. These results may be applied in computing the equivariant cohomology of their loop spaces.

References [Enhancements On Off] (What's this?)

  • 1. C. Allday, Rational homotopy and torus actions, Houston Journal of Math. 5 (1979), 1-19. MR 80m:57033
  • 2. -, Invariant Sullivan-de Rham forms on cyclic sets, J. London Math. Soc. 57 (1998), 478-490. MR 99g:55015
  • 3. C. Allday and V. Puppe, Cohomological methods in transformation groups, Cambridge University Press, 1993. MR 94g:55009
  • 4. A. K. Bousfield and V.K.A.M. Gugenheim, On PL de Rham theory and rational homotopy type, Memoirs of the American Mathematical Society, no. 179, 1976. MR 54:13906
  • 5. K. T. Chen, Reduced bar constructions on de Rham complexes, Algebra, Topology, and Category Theory, pp. 19-32, Academic Press, New York, 1976. MR 54:1272
  • 6. P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-275. MR 52:3584
  • 7. W. G. Dwyer and J. Spalinski, Homotopy theories and model categories, Handbook of Algebraic Topology (I.M. James, ed.), Elsevier Science B.V., 1995, pp. 73-126. MR 96h:55014
  • 8. S. Eilenberg and J. C. Moore, Homology and fibrations I, Coalgebras, cotensor product and its derived functors, Comment. Math. Helvetica 40 (1966), 199-236. MR 34:3579
  • 9. A. Borel, Seminar on transformation groups, Ann. of Math. Studies, vol. 46, Princeton University Press, 1960. MR 22:7129
  • 10. E. Getzler, J. D. S. Jones, and S. Petrack, Differential forms on loop spaces and the cyclic bar complex, Topology 30 (1991), 339-371. MR 92i:58179
  • 11. M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25-83. MR 99c:55009
  • 12. P.-P. Grivel, Formes différentielles et suites spectrales, Ann. Inst. Fourier 29 (1979), 17-37. MR 81b:55041
  • 13. V. Guillemin and S. Sternberg, Supersymmetry and equivariant de Rham theory, Springer-Verlag, New York, 1999. MR 2001i:53140
  • 14. S. Halperin, Lectures on minimal models, Mém. Soc. Math. France, vols. 9-10, 1983. MR 85i:55009
  • 15. S. Halperin and J. Stasheff, Obstructions to homotopy equivalences, Advances in Mathematics 32 (1979), 233-279. MR 80j:55016
  • 16. S. Lillywhite, Bar complexes and formality of pull-backs, Preprint.
  • 17. -, The topology of symplectic quotients of loop spaces, Ph.D. thesis, The University of Maryland, College Park, MD., 1998.
  • 18. -, The topology of the moduli space of arc-length parametrised closed curves in Euclidean space, Topology 39 (2000), 487-494. MR 2001b:55028
  • 19. G. Lupton, Variations on a conjecture of Halperin, Homotopy and Geometry, vol. 45, Banach Center Publications, 1998, pp. 115-135. MR 99m:55014
  • 20. J. McCleary, User's guide to spectral sequences, Publish or Perish, Inc., Wilmington, DE, 1985. MR 87f:55014
  • 21. T. J. Miller, On the formality of $(k-1)$-connected compact manifolds of dimension less than or equal to $4k-2$, Illinois Journal of Math. 23 (1979), 253-258. MR 80j:55017
  • 22. D. G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, vol. 43, Springer-Verlag, 1967. MR 36:6480
  • 23. -, Rational homotopy theory, Ann. of Math. 90 (1969), 205-295. MR 41:2678
  • 24. L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58-93. MR 35:7337
  • 25. C. Teleman, The quantization conjecture revisited, Ann. of Math 152 (2000), 1-43. MR 2002d:14073

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55P62, 55N91, 18G55, 57T30

Retrieve articles in all journals with MSC (2000): 55P62, 55N91, 18G55, 57T30

Additional Information

Steven Lillywhite
Affiliation: Department of Mathematics, University of Toronto, 100 St. George St., Toronto, Ontario, Canada M5S 3G3

Keywords: Rational homotopy theory, equivariant cohomology, bar complexes, loop spaces, homotopical algebra
Received by editor(s): January 1, 2002
Published electronically: February 25, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society