Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Approximations for Gabor and wavelet frames


Author: Deguang Han
Journal: Trans. Amer. Math. Soc. 355 (2003), 3329-3342
MSC (2000): Primary 42C15, 46C05, 47B10
DOI: https://doi.org/10.1090/S0002-9947-03-03047-2
Published electronically: April 24, 2003
MathSciNet review: 1974690
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\psi$ be a frame vector under the action of a collection of unitary operators $\mathcal U$. Motivated by the recent work of Frank, Paulsen and Tiballi and some application aspects of Gabor and wavelet frames, we consider the existence and uniqueness of the best approximation by normalized tight frame vectors. We prove that for any frame induced by a projective unitary representation for a countable discrete group, the best normalized tight frame (NTF) approximation exists and is unique. Therefore it applies to Gabor frames (including Gabor frames for subspaces) and frames induced by translation groups. Similar results hold for semi-orthogonal wavelet frames.


References [Enhancements On Off] (What's this?)

  • [AEG1] J. G. Aiken, J. A. Erdos and J. A. Goldstein, Unitary approximation of positive operators, Illinois J. Math., 24 (1980), 61-72. MR 81a:47026
  • [AEG2] J. G. Aiken, J. A. Erdos and J. A. Goldstein, On Löwdin orthogonalization, Internat. J. Quantum Chem., 18 (1980), 1101-1108.
  • [Ba] R. Balan, Equivalence relations and distances between Hilbert frames, Proc. Amer. Math. Soc., 127 (1999), 2353-2366. MR 99j:46025
  • [BF] J. Benedetto and M. Fickkus, Finite tight frames, Adv. in Computational Mathematics, 18 (2003), 357-385.
  • [BHW] J. Benedetto, C. Heil and D. F. Walnut, Gabor systems and the Balian-Low theorem, Gabor analysis and algorithms, 85-122, Appl. Numer. Harmonic Anal., Birkhäuser Boston, Boston, MA, 1998. MR 98j:42016
  • [BT] J. Benedetto and O. Treiber, Wavelet frames: Multiresolution analysis and extension principles, Wavelet Transforms and Time-Frequency Signal Analysis, Ed. L. Debnath, 3-36, Appl. Numer. Harmonic Anal., Birkhäuser Boston, Boston, MA, 2001. MR 2002c:42048
  • [Ca1] P. Casazza, The art of frame theory, Taiwanese J. Math., 4 (2000), 129-201. MR 2001f:42046
  • [Ca2] P. Casazza, Modern tools for Weyl-Heisenberg (Gabor) frame theory, Adv. Imag. Elect. Phys., 115 (2001), 1-127.
  • [CK] P. Casazza and J. Kova$\check{c}$evi$\acute{c}$, Uniform tight frames with erasures, preprint.
  • [CDH] O. Christensen, B. Deng and C. Heil, Density of Gabor frames, Appl. Comput. Harmonic Anal. 7 (1999), 292-304. MR 2000j:42043
  • [DL] X. Dai and D. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Memoirs Amer. Math. Soc., 134 (1998), No. 640. MR 98m:47067
  • [Dau] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Math., SIAM, Philadelphia (1992). MR 93e:42045
  • [DLL] I. Daubechies, H. Landau and Z. Landau, Gabor time-frequency lattices and the Wexler-Raz identity J. Fourier Anal. Appl. 1 (1995), 437-478. MR 96i:42021
  • [FS] H. G. Feichtinger and T. Strohmer (eds.), Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, 1998. MR 98h:42001
  • [FPT] M. Frank, V. I. Paulsen and T. R. Tiballi, Symmetric approximation of frames and bases in Hilbert spaces, Trans. Amer. Math. Soc., 354 (2002), 777-793. MR 2002j:42042
  • [GH1] J. P. Gabardo and D. Han, Frame representations for group-like unitary operator systems, J. Operator Theory, to appear.
  • [GH2] J. P. Gabardo and D. Han, Subspace Weyl-Heisenberg frames, J. Fourier Analysis and Appl., 7 (2001), 419-433. MR 2002f:42031
  • [GH3] J. P. Gabardo and D. Han, Weyl-Heisenberg dual frames and operator algebras, preprint.
  • [GHL] J. P. Gabardo, D. Han and D. Larson, Gabor frames and operator algebras, Wavelet Applications in Signal and Image Processing VIII, Proc. SPIE., 4119 (2000), 337-345.
  • [Ga] D. Gabor, Theory of Communication, J. Inst. Elec. Eng. (London) 93 (1946), 429-457.
  • [GL] J. A. Goldstein and Mel Levy, Linear algebra and quantum chemistry, Amer. Math. Monthly, 98 (1991), 710-718. MR 92j:81366
  • [Ha] D. Han, Wandering vectors for irrational rotation unitary systems, Trans. Amer. Math. Soc., 350 (1998), 309-320. MR 98k:47089
  • [HL] D. Han and D. Larson, Frames, bases and group representations, Memoirs Amer. Math. Soc., 147 (2000). MR 2001a:47013
  • [HW1] D. Han and Y. Wang, Lattice tiling and the Weyl-Heisenberg frames, Geometric and Functional Analysis, 11 (2001), 742-758.
  • [HW2] E. Hernández and G. Weiss, A First Course on Wavelets, CRC Press, Boca Raton, FL, 1996. MR 97i:42015
  • [JS] A. Janssen and T. Strohmer, Characterization and computation of canonical tight windows for Gabor frames, J. of Fourier Analysis and Appl., 8 (2002), 1-28. MR 2002m:42040
  • [KR] R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras, Vols. I and II, Academic Press, Inc. 1983 and 1986. MR 85j:46099; MR 88d:46106
  • [La] D. Larson, von Neumann algebras and wavelets, Proc. NATO Adv. Studies, 495 (1997), 267-312. MR 98g:46091
  • [Lo] P. -O. Löwdin, On the nonorthogonality problem, Adv. Quantum Chem., 5(1970), 185-199.
  • [Rie] M. A. Rieffel, von Neumann algebras associated with pairs of lattices in Lie groups, Math. Ann. 257 (1981), 403-418. MR 84f:22010
  • [RSh] A. Ron and Z. Shen, Weyl-Heisenberg frames and Riesz bases in $L_{2}({\mathbb R}^{d})$, Duke Mathematical Journal 89 (1997), 237-282. MR 98i:42013
  • [RSt] J. Ramanathan and T. Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmonic Anal. 2 (1995), 148-153. MR 96b:81049
  • [Va] V. S. Varadarajan, Geometry of Quantum Theory, Second Edition, Springer-Verlag, New York-Berlin, 1985. MR 87a:81009

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42C15, 46C05, 47B10

Retrieve articles in all journals with MSC (2000): 42C15, 46C05, 47B10


Additional Information

Deguang Han
Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 38216
Email: dhan@pegasus.cc.ucf.edu

DOI: https://doi.org/10.1090/S0002-9947-03-03047-2
Keywords: Hilbert spaces, frames, unitary systems, approximation, Gabor family and Gabor frames, wavelet frames.
Received by editor(s): February 19, 2002
Published electronically: April 24, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society