Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Local solvability and hypoellipticity for semilinear anisotropic partial differential equations


Authors: Giuseppe de Donno and Alessandro Oliaro
Journal: Trans. Amer. Math. Soc. 355 (2003), 3405-3432
MSC (2000): Primary 35S05
Published electronically: April 11, 2003
MathSciNet review: 1974694
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We propose a unified approach, based on methods from microlocal analysis, for characterizing the local solvability and hypoellipticity in $C^\infty$ and Gevrey $G^\sigma$ classes of $2$-variable semilinear anisotropic partial differential operators with multiple characteristics. The conditions imposed on the lower-order terms of the linear part of the operator are optimal.


References [Enhancements On Off] (What's this?)

  • [BT] Antonio Bove and David S. Tartakoff, Propagation of Gevrey regularity for a class of hypoelliptic equations, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2533–2575. MR 1340171, 10.1090/S0002-9947-96-01557-7
  • [BC] Jean-Michel Bony and Jean-Yves Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France 122 (1994), no. 1, 77–118 (French, with English and French summaries). MR 1259109
  • [CZ] Massimo Cicognani and Luisa Zanghirati, On a class of unsolvable operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 3, 357–369. MR 1256073
  • [C] A. Corli, On local solvability of linear partial differential operators with multiple characteristics, J. Differential Equations 81 (1989), no. 2, 275–293. MR 1016083, 10.1016/0022-0396(89)90124-1
  • [C2] Andrea Corli, On local solvability in Gevrey classes of linear partial differential operators with multiple characteristics, Comm. Partial Differential Equations 14 (1989), no. 1, 1–25. MR 973268, 10.1080/03605308908820589
  • [DR2] G. De Donno and L. Rodino, Gevrey hypoellipticity for partial differential equations with characteristics of higher multiplicity, to appear in Rend. Sem. Mat. Univ. Politecnico Torino, (2000).
  • [DR3] G. De Donno and L. Rodino, Gevrey hypoellipticity for equations with involutive characteristics of higher multiplicity, C. R. Acad. Bulgare Sci. 53 (2000), no. 7, 25–30. MR 1779525
  • [D] B. Dehman, Résolubilité local pour des équations semi-linéaires complexes, Canad. J. Math. 42 (1990), no. 1, 126–140 (French). MR 1043515, 10.4153/CJM-1990-008-x
  • [ES] Yuri V. Egorov and Bert-Wolfgang Schulze, Pseudo-differential operators, singularities, applications, Operator Theory: Advances and Applications, vol. 93, Birkhäuser Verlag, Basel, 1997. MR 1443430
  • [G] G. Garello, Inhomogeneous paramultiplication and microlocal singularities for semilinear equations, Boll. Un. Mat. Ital. B (7) 10 (1996), no. 4, 885–902 (English, with Italian summary). MR 1430158
  • [G1] G. Garello, Local solvability for semilinear equations with multiple characteristics, Proceedings of the Conference “Differential Equations” (Italian) (Ferrara, 1996), 1996, pp. 199–209 (1997). MR 1471025
  • [GG] Todor V. Gramchev, On the critical index of Gevrey solvability for some linear partial differential equations, Ann. Univ. Ferrara Sez. VII (N.S.) 45 (1999), no. suppl., 139–153 (2000) (English, with English and Italian summaries). Workshop on Partial Differential Equations (Ferrara, 1999). MR 1806494
  • [GP] T. Gramchev and P. Popivanov, Local solvability of semilinear partial differential equations, Ann. Univ. Ferrara Sez. VII (N.S.) 35 (1989), 147–154 (1990) (English, with Italian summary). MR 1079584
  • [GP1] Todor V. Gramchev and Petar R. Popivanov, Partial differential equations, Mathematical Research, vol. 108, Wiley-VCH Verlag Berlin GmbH, Berlin, 2000. Approximate solutions in scales of functional spaces. MR 1747915
  • [GPY] Todor Gramchev, Petar Popivanov, and Massafumi Yoshino, Critical Gevrey index for hypoellipticity of parabolic operators and Newton polygons, Ann. Mat. Pura Appl. (4) 170 (1996), 103–131. MR 1441616, 10.1007/BF01758985
  • [GR] Todor Gramchev and Luigi Rodino, Gevrey solvability for semilinear partial differential equations with multiple characteristics, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2 (1999), no. 1, 65–120 (English, with Italian summary). MR 1794545
  • [H] Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035
    Lars Hörmander, The analysis of linear partial differential operators. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients. MR 705278
    Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536
    Lars Hörmander, The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. Fourier integral operators. MR 781537
  • [HS] Jorge Hounie and Paulo Santiago, On the local solvability of semilinear equations, Comm. Partial Differential Equations 20 (1995), no. 9-10, 1777–1789. MR 1349231, 10.1080/03605309508821151
  • [HP] Charles Hunt and Alain Piriou, Opérateurs pseudo-différentiels anisotropes d’ordre variable, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A28–A31 (French). MR 0248567
  • [HP1] Charles Hunt and Alain Piriou, Majorations 𝐿² et inégalité sous-elliptique pour les opérateurs pseudo-différentiels anisotropes d’ordre variable, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A214–A217 (French). MR 0248568
  • [KS] K. Kajitani and S. Spagnolo, in progress, communicated to the meeting ``Perturbative methods for nonlinear partial differential equations'', Cagliari 2000.
  • [KW] K. Kajitani and S. Wakabayashi, Hypoelliptic operators in Gevrey classes, Recent developments in hyperbolic equations (Pisa, 1987) Pitman Res. Notes Math. Ser., vol. 183, Longman Sci. Tech., Harlow, 1988, pp. 115–134. MR 984364
  • [LA] Richard Lascar, Distributions intégrales de Fourier et classes de Denjoy-Carleman. Applications, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 9, A485–A488. MR 0427876
  • [L] Hans Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155–158. MR 0088629
  • [LR1] Otto Liess and Luigi Rodino, Inhomogeneous Gevrey classes and related pseudodifferential operators, Boll. Un. Mat. Ital. C (6) 3 (1984), no. 1, 233–323. MR 749292
  • [LR2] O. Liess and L. Rodino, Linear partial differential equations with multiple involutive characteristics, Microlocal analysis and spectral theory (Lucca, 1996) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 490, Kluwer Acad. Publ., Dordrecht, 1997, pp. 1–38. MR 1451388
  • [LO] Michael Lorenz, Anisotropic operators with characteristics of constant multiplicity, Math. Nachr. 124 (1985), 199–216. MR 827898, 10.1002/mana.19851240113
  • [MA] P. Marcolongo, Solvability and nonsolvability for partial differential equations in Gevrey spaces, Ph.D. Dissertation, Mathematics, University of Torino, 2000.
  • [MO] Paola Marcolongo and Alessandro Oliaro, Local solvability for semilinear anisotropic partial differential equations, Ann. Mat. Pura Appl. (4) 179 (2001), 229–262. MR 1848755, 10.1007/BF02505957
  • [MR] Maria Mascarello and Luigi Rodino, Partial differential equations with multiple characteristics, Mathematical Topics, vol. 13, Akademie Verlag, Berlin, 1997. MR 1608649
  • [M] A. Menikoff, On hypoelliptic operators with double characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 4, 689–724. MR 0473490
  • [P1] P. R. Popivanov, The local solvability of a certain class of pseudodifferential equations with double characteristics, Trudy Sem. Petrovsk. Vyp. 1 (1975), 237–278 (Russian). MR 0427811
  • [P2] P. R. Popivanov, Local solvability of some classes of linear differential operators with multiple characteristics, Ann. Univ. Ferrara Sez. VII (N.S.) 45 (1999), no. suppl., 263–274 (2000). Workshop on Partial Differential Equations (Ferrara, 1999). MR 1806503
  • [P3] P. R. Popivanov, Microlocal properties of a class of pseudodifferential operators with double involutive characteristics, Partial differential equations (Warsaw, 1984) Banach Center Publ., vol. 19, PWN, Warsaw, 1987, pp. 213–224. MR 1055173
  • [PP] Pet″r R. Popivanov and Georgi St. Popov, Microlocal properties of a class of pseudodifferential operators with multiple characteristics, Serdica 6 (1980), no. 2, 167–181 (Russian). MR 601354
  • [R] Gary B. Roberts, Quasisubelliptic estimates for operators with multiple characteristics, Comm. Partial Differential Equations 11 (1986), no. 3, 231–320. MR 822339, 10.1080/03605308608820424
  • [RO] Luigi Rodino, Linear partial differential operators in Gevrey spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR 1249275
  • [RO2] L. Rodino, Local solvability in Gevrey classes, Hyperbolic equations (Padua, 1985) Pitman Res. Notes Math. Ser., vol. 158, Longman Sci. Tech., Harlow, 1987, pp. 167–185. MR 922088
  • [S] N. A. Šananin, The local solvability of equations of quasiprincipal type, Mat. Sb. (N.S.) 97(139) (1975), no. 4 (8), 503–516, 633 (Russian). MR 0473446
  • [SE] F. Segàla, A class of locally solvable differential operators, Boll. Un. Mat. Ital. B (6) 4 (1985), no. 1, 241–251 (English, with Italian summary). MR 783342
  • [SP] Sergio Spagnolo, Local and semi-global solvability for systems of non-principal type, Comm. Partial Differential Equations 25 (2000), no. 5-6, 1115–1141. MR 1759804, 10.1080/03605300008821543
  • [T] François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 1, Plenum Press, New York-London, 1980. Pseudodifferential operators; The University Series in Mathematics. MR 597144
    François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, Plenum Press, New York-London, 1980. Fourier integral operators; The University Series in Mathematics. MR 597145
  • [TU] V. N. Tulovskiĭ, Propagation of singularities of operators with characteristics of constant multiplicity, Trudy Moskov. Mat. Obshch. 39 (1979), 113–134, 236 (Russian). MR 544943
  • [W] Seiichiro Wakabayashi, Singularities of solutions of the Cauchy problem for hyperbolic systems in Gevrey classes, Japan. J. Math. (N.S.) 11 (1985), no. 1, 157–201. MR 877462

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35S05

Retrieve articles in all journals with MSC (2000): 35S05


Additional Information

Giuseppe de Donno
Affiliation: Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
Email: dedonno@dm.unito.it

Alessandro Oliaro
Affiliation: Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
Email: oliaro@dm.unito.it

DOI: http://dx.doi.org/10.1090/S0002-9947-03-03275-6
Received by editor(s): February 7, 2001
Received by editor(s) in revised form: October 8, 2002
Published electronically: April 11, 2003
Article copyright: © Copyright 2003 American Mathematical Society