Primitive free cubics with specified norm and trace

Authors:
Sophie Huczynska and Stephen D. Cohen

Journal:
Trans. Amer. Math. Soc. **355** (2003), 3099-3116

MSC (2000):
Primary 11T06; Secondary 11A25, 11T24, 11T30

DOI:
https://doi.org/10.1090/S0002-9947-03-03301-4

Published electronically:
April 25, 2003

MathSciNet review:
1974677

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of a primitive free (normal) cubic over a finite field with arbitrary specified values of () and (primitive) is guaranteed. This is the most delicate case of a general existence theorem whose proof is thereby completed.

**[Ca1]**L. Carlitz,*Primitive roots in a finite field*, Trans. Amer. Math. Soc.**73**(1952), 373-382. MR**14:539a****[Ca2]**L. Carlitz,*Some problems involving primitive roots in a finite field*, Proc. Nat. Acad. Sci. U.S.A.**38**(1952), 314-318, 618. MR**14:250f****[Co]**S. D. Cohen,*Gauss sums and a sieve for generators of Galois fields*, Publ. Math. Debrecen**56**(2000), 293-312. MR**2001e:11120****[CoHa1]**S. D. Cohen and D. Hachenberger,*Primitive normal bases with prescribed trace*, Appl. Algebra Engrg. Comm. Comp.**9**(1999), 383-403. MR**2000c:11198****[CoHa2]**S. D. Cohen and D. Hachenberger,*Primitivity, freeness, norm and trace*, Discrete Math.**214**(2000), 135-144. MR**2000j:11190****[CoHu1]**S. D. Cohen and S. Huczynska,*The primitive normal basis theorem -- without a computer*, J. London Math. Soc.**67**(2003), 41-56.**[CoHu2]**S. D. Cohen and S. Huczynska,*Primitive free quartics with specified norm and trace*, Acta Arith. (to appear).**[Da]**H. Davenport,*Bases for finite fields*, J. London Math. Soc.**43**(1968), 21-49. MR**37:2729****[Ka]**N. M. Katz,*Estimates for Soto-Andrade sums*, J. reine angew. Math.**438**(1993), 143-161. MR**94h:11109****[LeSc]**H. W. Lenstra, Jr. and R. J. Schoof,*Primitive normal bases for finite fields*, Math. Comp.**48**(1987), 217-231. MR**88c:11076****[LiNi]**R. Lidl and H. Niederreiter,*Finite Fields*, Addison-Wesley, Reading, Massachusetts, (1983);*2nd edition*: Cambridge University Press, Cambridge (1997). MR**97i:11115**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
11T06,
11A25,
11T24,
11T30

Retrieve articles in all journals with MSC (2000): 11T06, 11A25, 11T24, 11T30

Additional Information

**Sophie Huczynska**

Affiliation:
Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland

Address at time of publication:
School of Informatics, University of Edinburgh, Edinburgh EH8 9LE, Scotland

Email:
shuczyns@inf.ed.ac.uk

**Stephen D. Cohen**

Affiliation:
Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland

Email:
sdc@maths.gla.ac.uk

DOI:
https://doi.org/10.1090/S0002-9947-03-03301-4

Received by editor(s):
September 26, 2002

Received by editor(s) in revised form:
January 30, 2003

Published electronically:
April 25, 2003

Article copyright:
© Copyright 2003
American Mathematical Society